死亡-出生适应动态:性状进化建模

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-09-19 DOI:10.1103/physreve.110.l032401
Ian Braga, Emmanuel Pereira, Lucas Wardil
{"title":"死亡-出生适应动态:性状进化建模","authors":"Ian Braga, Emmanuel Pereira, Lucas Wardil","doi":"10.1103/physreve.110.l032401","DOIUrl":null,"url":null,"abstract":"Here, we derive stochastic adaptive dynamics from the microscopic death-birth process by explicitly modeling the trait variation from offspring to parent in each reproductive event, thereby accounting for a highly polymorphic population. This generalization enables the construction of a quantitative model that can be subjected to empirical validation. Our mathematical analysis furnishes a formula for estimating the trait variation in the reproductive step by exclusively observing the current trait variation in the population. In addition, we provide a straightforward approach to obtain the fitness function associated with a particular trait by examining its actual evolutionary trajectory, which can be employed to forecast the continued evolution of the trait.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"191 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Death-birth adaptive dynamics: modeling trait evolution\",\"authors\":\"Ian Braga, Emmanuel Pereira, Lucas Wardil\",\"doi\":\"10.1103/physreve.110.l032401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we derive stochastic adaptive dynamics from the microscopic death-birth process by explicitly modeling the trait variation from offspring to parent in each reproductive event, thereby accounting for a highly polymorphic population. This generalization enables the construction of a quantitative model that can be subjected to empirical validation. Our mathematical analysis furnishes a formula for estimating the trait variation in the reproductive step by exclusively observing the current trait variation in the population. In addition, we provide a straightforward approach to obtain the fitness function associated with a particular trait by examining its actual evolutionary trajectory, which can be employed to forecast the continued evolution of the trait.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.l032401\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.l032401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们从微观的死亡-出生过程中推导出随机适应动力学,明确地模拟了每次繁殖过程中子代到父代的性状变异,从而考虑到高度多态的种群。这种概括使我们能够构建一个可进行经验验证的定量模型。我们的数学分析提供了一个公式,可以通过只观察种群当前的性状变异来估计繁殖步骤中的性状变异。此外,我们还提供了一种直接的方法,通过研究特定性状的实际进化轨迹来获得与之相关的适应度函数,从而预测该性状的持续进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Death-birth adaptive dynamics: modeling trait evolution
Here, we derive stochastic adaptive dynamics from the microscopic death-birth process by explicitly modeling the trait variation from offspring to parent in each reproductive event, thereby accounting for a highly polymorphic population. This generalization enables the construction of a quantitative model that can be subjected to empirical validation. Our mathematical analysis furnishes a formula for estimating the trait variation in the reproductive step by exclusively observing the current trait variation in the population. In addition, we provide a straightforward approach to obtain the fitness function associated with a particular trait by examining its actual evolutionary trajectory, which can be employed to forecast the continued evolution of the trait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1