具有高阶相互作用的三振荡器系统中多稳同步状态的共存

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-09-18 DOI:10.1103/physreve.110.034311
Xuan Wang, Haihong Li, Qionglin Dai, Junzhong Yang
{"title":"具有高阶相互作用的三振荡器系统中多稳同步状态的共存","authors":"Xuan Wang, Haihong Li, Qionglin Dai, Junzhong Yang","doi":"10.1103/physreve.110.034311","DOIUrl":null,"url":null,"abstract":"We study a three-oscillator system with pairwise (1-simplex) and triadic (2-simplex) interactions, and focus on how the interplay between these two types of interactions influences synchronous dynamics. Using a minimal model, dynamical phenomena in systems that have been previously studied under the thermodynamic limit (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math>) are further clarified. Various synchronous states, including in-phase and antiphase synchronous states, as well as partial synchronous states are demonstrated. Meanwhile, significant multistable behaviors are revealed. Our work extends previous research on pairwise and triadic interactions, which can deepen our understanding of the impact of correlation between higher-order interaction and multistability. These dynamic phenomena bear resemblance to the diverse synchronization patterns of the heart, and they also serve as pivotal factors in information storage and memory retention within the brain.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coexistence of multistable synchronous states in a three-oscillator system with higher-order interaction\",\"authors\":\"Xuan Wang, Haihong Li, Qionglin Dai, Junzhong Yang\",\"doi\":\"10.1103/physreve.110.034311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a three-oscillator system with pairwise (1-simplex) and triadic (2-simplex) interactions, and focus on how the interplay between these two types of interactions influences synchronous dynamics. Using a minimal model, dynamical phenomena in systems that have been previously studied under the thermodynamic limit (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math>) are further clarified. Various synchronous states, including in-phase and antiphase synchronous states, as well as partial synchronous states are demonstrated. Meanwhile, significant multistable behaviors are revealed. Our work extends previous research on pairwise and triadic interactions, which can deepen our understanding of the impact of correlation between higher-order interaction and multistability. These dynamic phenomena bear resemblance to the diverse synchronization patterns of the heart, and they also serve as pivotal factors in information storage and memory retention within the brain.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034311\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034311","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个具有成对(1-simplex)和成三(2-simplex)相互作用的三振子系统,并重点探讨了这两种相互作用之间的相互作用如何影响同步动力学。利用一个最小模型,进一步阐明了以前在热力学极限(N→∞)下研究过的系统中的动力学现象。展示了各种同步状态,包括同相和反相同步状态,以及部分同步状态。同时,还揭示了重要的多稳态行为。我们的研究扩展了以往关于成对和三元相互作用的研究,加深了我们对高阶相互作用和多稳定性之间相关性影响的理解。这些动态现象与心脏的多种同步模式相似,也是大脑信息存储和记忆保持的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coexistence of multistable synchronous states in a three-oscillator system with higher-order interaction
We study a three-oscillator system with pairwise (1-simplex) and triadic (2-simplex) interactions, and focus on how the interplay between these two types of interactions influences synchronous dynamics. Using a minimal model, dynamical phenomena in systems that have been previously studied under the thermodynamic limit (N) are further clarified. Various synchronous states, including in-phase and antiphase synchronous states, as well as partial synchronous states are demonstrated. Meanwhile, significant multistable behaviors are revealed. Our work extends previous research on pairwise and triadic interactions, which can deepen our understanding of the impact of correlation between higher-order interaction and multistability. These dynamic phenomena bear resemblance to the diverse synchronization patterns of the heart, and they also serve as pivotal factors in information storage and memory retention within the brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1