解决水资源供需矛盾:多目标区域水资源优化配置研究

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environment, Development and Sustainability Pub Date : 2024-09-19 DOI:10.1007/s10668-024-05214-z
Jingyi Chu, Zhaocai Wang, Xiaoguang Bao, Zhiyuan Yao, Xuefei Cui
{"title":"解决水资源供需矛盾:多目标区域水资源优化配置研究","authors":"Jingyi Chu, Zhaocai Wang, Xiaoguang Bao, Zhiyuan Yao, Xuefei Cui","doi":"10.1007/s10668-024-05214-z","DOIUrl":null,"url":null,"abstract":"<p>As a result of economic development, population growth, accelerated urbanization and the frequent occurrence of extreme weather events, the contradiction between the supply and demand for water resources between regions has become increasingly acute. In order to solve the problem of regional water shortage and irrational utilization, the optimal allocation of water resources has become one of the research hotspots in recent years. In this study, firstly a multi-objective integrated allocation model of regional water resources is constructed by introducing social, economic, and environmental objective functions to address the complex uncertainties in the water resources system. Secondly, the standard whale algorithm is optimized and improved by introducing chaotic population initialization, chaotic convergence factor, adaptive Lévy flight and improved positive cosine mechanism. The model parameters, including the 2025 water resource demand and supply, pollutant discharge content, and unit water supply cost coefficients, are set by consulting the Shanxi Water Resources Bulletin 2022, the Shanxi Provincial Department of Water Resources, and the Report on the Work of the Shanxi Provincial Government 2023. Subsequently, the improved whale algorithm is utilized for the optimization of the predicted water resources for various target years in the future in the lower reaches of the Fen River in Shanxi Province, China. This ultimately yields optimized allocation results independently from both supply and demand sides. The experimental results demonstrate that the framework for water resource optimization using the improved whale algorithm is feasible, providing a reference scheme for regional multi-objective water resource optimization. Finally, the proposed policy recommendations emphasize the necessity of strengthening water diversion planning and management, promoting virtual water and water-saving initiatives, and highlighting water recycling and environmental protection in order to ensure the sustainable allocation of water resources in the downstream Fen River basin.</p>","PeriodicalId":540,"journal":{"name":"Environment, Development and Sustainability","volume":"39 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing the contradiction between water supply and demand: a study on multi-objective regional water resources optimization allocation\",\"authors\":\"Jingyi Chu, Zhaocai Wang, Xiaoguang Bao, Zhiyuan Yao, Xuefei Cui\",\"doi\":\"10.1007/s10668-024-05214-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a result of economic development, population growth, accelerated urbanization and the frequent occurrence of extreme weather events, the contradiction between the supply and demand for water resources between regions has become increasingly acute. In order to solve the problem of regional water shortage and irrational utilization, the optimal allocation of water resources has become one of the research hotspots in recent years. In this study, firstly a multi-objective integrated allocation model of regional water resources is constructed by introducing social, economic, and environmental objective functions to address the complex uncertainties in the water resources system. Secondly, the standard whale algorithm is optimized and improved by introducing chaotic population initialization, chaotic convergence factor, adaptive Lévy flight and improved positive cosine mechanism. The model parameters, including the 2025 water resource demand and supply, pollutant discharge content, and unit water supply cost coefficients, are set by consulting the Shanxi Water Resources Bulletin 2022, the Shanxi Provincial Department of Water Resources, and the Report on the Work of the Shanxi Provincial Government 2023. Subsequently, the improved whale algorithm is utilized for the optimization of the predicted water resources for various target years in the future in the lower reaches of the Fen River in Shanxi Province, China. This ultimately yields optimized allocation results independently from both supply and demand sides. The experimental results demonstrate that the framework for water resource optimization using the improved whale algorithm is feasible, providing a reference scheme for regional multi-objective water resource optimization. Finally, the proposed policy recommendations emphasize the necessity of strengthening water diversion planning and management, promoting virtual water and water-saving initiatives, and highlighting water recycling and environmental protection in order to ensure the sustainable allocation of water resources in the downstream Fen River basin.</p>\",\"PeriodicalId\":540,\"journal\":{\"name\":\"Environment, Development and Sustainability\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment, Development and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10668-024-05214-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment, Development and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10668-024-05214-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着经济发展、人口增长、城市化进程加快以及极端天气事件频发,区域间水资源供需矛盾日益突出。为解决区域水资源短缺和不合理利用问题,水资源优化配置成为近年来的研究热点之一。本研究首先针对水资源系统的复杂不确定性,引入社会、经济和环境目标函数,构建了区域水资源多目标综合配置模型。其次,通过引入混沌种群初始化、混沌收敛因子、自适应莱维飞行和改进的正余弦机制,对标准鲸鱼算法进行了优化和改进。参考《2022 年山西省水资源公报》、《山西省水利厅工作报告》和《2023 年山西省政府工作报告》,设定模型参数,包括 2025 年水资源供需量、污染物排放量、单位供水成本系数等。随后,利用改进的鲸鱼算法对中国山西省汾河下游未来各目标年的水资源量进行预测优化。最终得出了供需双方独立的优化分配结果。实验结果表明,利用改进的鲸鱼算法进行水资源优化的框架是可行的,为区域多目标水资源优化提供了参考方案。最后,提出了政策建议,强调必须加强引水规划管理,推广虚拟水和节水举措,突出水循环利用和环境保护,以确保汾河下游流域水资源的可持续配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing the contradiction between water supply and demand: a study on multi-objective regional water resources optimization allocation

As a result of economic development, population growth, accelerated urbanization and the frequent occurrence of extreme weather events, the contradiction between the supply and demand for water resources between regions has become increasingly acute. In order to solve the problem of regional water shortage and irrational utilization, the optimal allocation of water resources has become one of the research hotspots in recent years. In this study, firstly a multi-objective integrated allocation model of regional water resources is constructed by introducing social, economic, and environmental objective functions to address the complex uncertainties in the water resources system. Secondly, the standard whale algorithm is optimized and improved by introducing chaotic population initialization, chaotic convergence factor, adaptive Lévy flight and improved positive cosine mechanism. The model parameters, including the 2025 water resource demand and supply, pollutant discharge content, and unit water supply cost coefficients, are set by consulting the Shanxi Water Resources Bulletin 2022, the Shanxi Provincial Department of Water Resources, and the Report on the Work of the Shanxi Provincial Government 2023. Subsequently, the improved whale algorithm is utilized for the optimization of the predicted water resources for various target years in the future in the lower reaches of the Fen River in Shanxi Province, China. This ultimately yields optimized allocation results independently from both supply and demand sides. The experimental results demonstrate that the framework for water resource optimization using the improved whale algorithm is feasible, providing a reference scheme for regional multi-objective water resource optimization. Finally, the proposed policy recommendations emphasize the necessity of strengthening water diversion planning and management, promoting virtual water and water-saving initiatives, and highlighting water recycling and environmental protection in order to ensure the sustainable allocation of water resources in the downstream Fen River basin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment, Development and Sustainability
Environment, Development and Sustainability Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
10.20
自引率
6.10%
发文量
754
期刊介绍: Environment, Development and Sustainability is an international and multidisciplinary journal covering all aspects of the environmental impacts of socio-economic development. It is also concerned with the complex interactions which occur between development and environment, and its purpose is to seek ways and means for achieving sustainability in all human activities aimed at such development. The subject matter of the journal includes the following and related issues: -mutual interactions among society, development and environment, and their implications for sustainable development -technical, economic, ethical and philosophical aspects of sustainable development -global sustainability - the obstacles and ways in which they could be overcome -local and regional sustainability initiatives, their practical implementation, and relevance for use in a wider context -development and application of indicators of sustainability -development, verification, implementation and monitoring of policies for sustainable development -sustainable use of land, water, energy and biological resources in development -impacts of agriculture and forestry activities on soil and aquatic ecosystems and biodiversity -effects of energy use and global climate change on development and sustainability -impacts of population growth and human activities on food and other essential resources for development -role of national and international agencies, and of international aid and trade arrangements in sustainable development -social and cultural contexts of sustainable development -role of education and public awareness in sustainable development -role of political and economic instruments in sustainable development -shortcomings of sustainable development and its alternatives.
期刊最新文献
Analyzing the effects of socioeconomic, natural and landscape factors on PM2.5 concentrations from a spatial perspective Addressing the contradiction between water supply and demand: a study on multi-objective regional water resources optimization allocation Development of single and dual crop coefficients for drip-irrigated broccoli using weighing type field lysimeters in semi-arid environment Energy transition policy, cash flow uncertainty and R&D expenditures of energy enterprises Green recycling of used motor oil and steel slag aggregate in concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1