通过诱导不对称电子分布增强共价有机框架中的过氧化氢光合作用

0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-09-19 DOI:10.1038/s44160-024-00644-z
Youxing Liu, Lu Li, Zhiyuan Sang, Hao Tan, Na Ye, Chenglong Sun, Zongqiang Sun, Mingchuan Luo, Shaojun Guo
{"title":"通过诱导不对称电子分布增强共价有机框架中的过氧化氢光合作用","authors":"Youxing Liu, Lu Li, Zhiyuan Sang, Hao Tan, Na Ye, Chenglong Sun, Zongqiang Sun, Mingchuan Luo, Shaojun Guo","doi":"10.1038/s44160-024-00644-z","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) can be used as photocatalysts for the direct photosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) from oxygen, water and sunlight. However, their highly symmetric structure can lead to weak adsorption of O<sub>2</sub> and, therefore, unsatisfactory photocatalytic performance. Here we explore the local asymmetric electron distribution induced by Pauli and electron–electron repulsion in COFs to construct localized bonding sites for O<sub>2</sub> species, which promotes photocatalytic H<sub>2</sub>O<sub>2</sub> production. Experimental results and theoretical calculations reveal that TAPT–FTPB COFs (where TAPT is 1,3,5-tris-(4-aminophenyl) triazine and FTPB is 5-(5-formylthiophen-2-yl)thiophene-2-carbaldehyde) with an asymmetric electron distribution show strong O<sub>2</sub> adsorption interaction and a record-breaking solar-to-chemical conversion efficiency of 1.22% for direct photosynthesis of H<sub>2</sub>O<sub>2</sub> from oxygen and water, which is higher than in the photosynthesis of plants (~0.1%). A flow-type photocatalytic microreactor integrated with TAPT–FTPB COFs exhibits 100% sterilization efficiency for killing bacteria and 97.8% conversion for photocatalytic 2-thiophene methylamine coupling. This work reports a strategy for manipulating the local electron distribution in COFs, opening the door for research on the rational design of high-performance photocatalysis with a local asymmetric electron distribution.</p><figure></figure>","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution\",\"authors\":\"Youxing Liu, Lu Li, Zhiyuan Sang, Hao Tan, Na Ye, Chenglong Sun, Zongqiang Sun, Mingchuan Luo, Shaojun Guo\",\"doi\":\"10.1038/s44160-024-00644-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent organic frameworks (COFs) can be used as photocatalysts for the direct photosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) from oxygen, water and sunlight. However, their highly symmetric structure can lead to weak adsorption of O<sub>2</sub> and, therefore, unsatisfactory photocatalytic performance. Here we explore the local asymmetric electron distribution induced by Pauli and electron–electron repulsion in COFs to construct localized bonding sites for O<sub>2</sub> species, which promotes photocatalytic H<sub>2</sub>O<sub>2</sub> production. Experimental results and theoretical calculations reveal that TAPT–FTPB COFs (where TAPT is 1,3,5-tris-(4-aminophenyl) triazine and FTPB is 5-(5-formylthiophen-2-yl)thiophene-2-carbaldehyde) with an asymmetric electron distribution show strong O<sub>2</sub> adsorption interaction and a record-breaking solar-to-chemical conversion efficiency of 1.22% for direct photosynthesis of H<sub>2</sub>O<sub>2</sub> from oxygen and water, which is higher than in the photosynthesis of plants (~0.1%). A flow-type photocatalytic microreactor integrated with TAPT–FTPB COFs exhibits 100% sterilization efficiency for killing bacteria and 97.8% conversion for photocatalytic 2-thiophene methylamine coupling. This work reports a strategy for manipulating the local electron distribution in COFs, opening the door for research on the rational design of high-performance photocatalysis with a local asymmetric electron distribution.</p><figure></figure>\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44160-024-00644-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44160-024-00644-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)可用作光催化剂,直接利用氧气、水和阳光进行过氧化氢(H2O2)的光合作用。然而,它们的高度对称结构会导致对 O2 的吸附能力较弱,因此光催化性能不尽人意。在此,我们探讨了 COFs 中保利和电子-电子斥力诱导的局部不对称电子分布,从而为 O2 物种构建局部键合位点,促进光催化 H2O2 的产生。实验结果和理论计算显示,具有非对称电子分布的 TAPT-FTPB COFs(其中 TAPT 为 1,3,5- 三-(4-氨基苯基)三嗪,FTPB 为 5-(5-醛基噻吩-2-基)噻吩-2-甲醛)显示出很强的 O2 吸附相互作用,其太阳能-化学转化效率达到破纪录的 1.22% ,高于植物光合作用(约 0.1%)。集成了 TAPT-FTPB COFs 的流动型光催化微反应器在杀灭细菌方面的灭菌效率为 100%,在光催化 2-噻吩甲胺偶联方面的转化率为 97.8%。这项工作报告了一种操纵 COFs 中局部电子分布的策略,为合理设计具有局部不对称电子分布的高性能光催化技术的研究打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution

Covalent organic frameworks (COFs) can be used as photocatalysts for the direct photosynthesis of hydrogen peroxide (H2O2) from oxygen, water and sunlight. However, their highly symmetric structure can lead to weak adsorption of O2 and, therefore, unsatisfactory photocatalytic performance. Here we explore the local asymmetric electron distribution induced by Pauli and electron–electron repulsion in COFs to construct localized bonding sites for O2 species, which promotes photocatalytic H2O2 production. Experimental results and theoretical calculations reveal that TAPT–FTPB COFs (where TAPT is 1,3,5-tris-(4-aminophenyl) triazine and FTPB is 5-(5-formylthiophen-2-yl)thiophene-2-carbaldehyde) with an asymmetric electron distribution show strong O2 adsorption interaction and a record-breaking solar-to-chemical conversion efficiency of 1.22% for direct photosynthesis of H2O2 from oxygen and water, which is higher than in the photosynthesis of plants (~0.1%). A flow-type photocatalytic microreactor integrated with TAPT–FTPB COFs exhibits 100% sterilization efficiency for killing bacteria and 97.8% conversion for photocatalytic 2-thiophene methylamine coupling. This work reports a strategy for manipulating the local electron distribution in COFs, opening the door for research on the rational design of high-performance photocatalysis with a local asymmetric electron distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution A singly bonded gallanediyl with redox-active and redox-inert reactivity External forces align supramolecular materials Interfacially coupled Cu-cluster/GaN photocathode for efficient CO2 to ethylene conversion Computationally guided design of a diazotransfer reagent with high reactivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1