从数据故事到对话:生成式人工智能代理和数据故事在增强数据可视化理解方面的随机对照试验

Lixiang Yan, Roberto Martinez-Maldonado, Yueqiao Jin, Vanessa Echeverria, Mikaela Milesi, Jie Fan, Linxuan Zhao, Riordan Alfredo, Xinyu Li, Dragan Gašević
{"title":"从数据故事到对话:生成式人工智能代理和数据故事在增强数据可视化理解方面的随机对照试验","authors":"Lixiang Yan, Roberto Martinez-Maldonado, Yueqiao Jin, Vanessa Echeverria, Mikaela Milesi, Jie Fan, Linxuan Zhao, Riordan Alfredo, Xinyu Li, Dragan Gašević","doi":"arxiv-2409.11645","DOIUrl":null,"url":null,"abstract":"Generative AI (GenAI) agents offer a potentially scalable approach to support\ncomprehending complex data visualisations, a skill many individuals struggle\nwith. While data storytelling has proven effective, there is little evidence\nregarding the comparative effectiveness of GenAI agents. To address this gap,\nwe conducted a randomised controlled study with 141 participants to compare the\neffectiveness and efficiency of data dialogues facilitated by both passive\n(which simply answer participants' questions about visualisations) and\nproactive (infused with scaffolding questions to guide participants through\nvisualisations) GenAI agents against data storytelling in enhancing their\ncomprehension of data visualisations. Comprehension was measured before,\nduring, and after the intervention. Results suggest that passive GenAI agents\nimprove comprehension similarly to data storytelling both during and after\nintervention. Notably, proactive GenAI agents significantly enhance\ncomprehension after intervention compared to both passive GenAI agents and\nstandalone data storytelling, regardless of participants' visualisation\nliteracy, indicating sustained improvements and learning.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension\",\"authors\":\"Lixiang Yan, Roberto Martinez-Maldonado, Yueqiao Jin, Vanessa Echeverria, Mikaela Milesi, Jie Fan, Linxuan Zhao, Riordan Alfredo, Xinyu Li, Dragan Gašević\",\"doi\":\"arxiv-2409.11645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative AI (GenAI) agents offer a potentially scalable approach to support\\ncomprehending complex data visualisations, a skill many individuals struggle\\nwith. While data storytelling has proven effective, there is little evidence\\nregarding the comparative effectiveness of GenAI agents. To address this gap,\\nwe conducted a randomised controlled study with 141 participants to compare the\\neffectiveness and efficiency of data dialogues facilitated by both passive\\n(which simply answer participants' questions about visualisations) and\\nproactive (infused with scaffolding questions to guide participants through\\nvisualisations) GenAI agents against data storytelling in enhancing their\\ncomprehension of data visualisations. Comprehension was measured before,\\nduring, and after the intervention. Results suggest that passive GenAI agents\\nimprove comprehension similarly to data storytelling both during and after\\nintervention. Notably, proactive GenAI agents significantly enhance\\ncomprehension after intervention compared to both passive GenAI agents and\\nstandalone data storytelling, regardless of participants' visualisation\\nliteracy, indicating sustained improvements and learning.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(GenAI)代理提供了一种潜在的可扩展方法来支持理解复杂的数据可视化,这是许多人都在努力学习的一项技能。虽然讲数据故事已被证明是有效的,但有关 GenAI 代理的比较效果的证据却很少。为了弥补这一不足,我们对141名参与者进行了随机对照研究,比较了被动式(只回答参与者关于可视化的问题)和主动式(通过脚手架问题引导参与者完成可视化)GenAI代理与数据讲故事在增强参与者对数据可视化的理解方面的效果和效率。在干预前、干预中和干预后都对参与者的理解能力进行了测量。结果表明,在干预期间和干预之后,被动 GenAI 代理对理解能力的提高与数据讲故事相似。值得注意的是,与被动型 GenAI 代理和单独的数据讲故事相比,主动型 GenAI 代理在干预后显著提高了理解能力,而与参与者的可视化读写能力无关,这表明了持续的改进和学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension
Generative AI (GenAI) agents offer a potentially scalable approach to support comprehending complex data visualisations, a skill many individuals struggle with. While data storytelling has proven effective, there is little evidence regarding the comparative effectiveness of GenAI agents. To address this gap, we conducted a randomised controlled study with 141 participants to compare the effectiveness and efficiency of data dialogues facilitated by both passive (which simply answer participants' questions about visualisations) and proactive (infused with scaffolding questions to guide participants through visualisations) GenAI agents against data storytelling in enhancing their comprehension of data visualisations. Comprehension was measured before, during, and after the intervention. Results suggest that passive GenAI agents improve comprehension similarly to data storytelling both during and after intervention. Notably, proactive GenAI agents significantly enhance comprehension after intervention compared to both passive GenAI agents and standalone data storytelling, regardless of participants' visualisation literacy, indicating sustained improvements and learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1