{"title":"用于无人潜航器实时运动感应的深度学习辅助三电须传感器阵列","authors":"Bo Liu, Bowen Dong, Hao Jin, Peng Zhu, Zhaoyang Mu, Yuanzheng Li, Jianhua Liu, Zhaochen Meng, Xinyue Zhou, Peng Xu, Minyi Xu","doi":"10.1002/admt.202401053","DOIUrl":null,"url":null,"abstract":"Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning-assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near-field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2<i>V</i>/<i>ms</i><sup>−1</sup>, and a signal-to-noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA-based assisted perception holds immense potential for enhancing unmanned underwater vehicle near-field perception and navigation capabilities across a wide range of applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle\",\"authors\":\"Bo Liu, Bowen Dong, Hao Jin, Peng Zhu, Zhaoyang Mu, Yuanzheng Li, Jianhua Liu, Zhaochen Meng, Xinyue Zhou, Peng Xu, Minyi Xu\",\"doi\":\"10.1002/admt.202401053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning-assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near-field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2<i>V</i>/<i>ms</i><sup>−1</sup>, and a signal-to-noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA-based assisted perception holds immense potential for enhancing unmanned underwater vehicle near-field perception and navigation capabilities across a wide range of applications.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202401053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202401053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle
Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning-assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near-field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal-to-noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA-based assisted perception holds immense potential for enhancing unmanned underwater vehicle near-field perception and navigation capabilities across a wide range of applications.