用于光电化学水分离的可扩展还原氧化石墨烯导电层颗粒光电阴极

Ruiyuan Sun, Qinglu Liu, Qitao Liu, Weilong Qin, Jiabo Le, Xiaopei Ren, Muhammad Bilal Akbar, Yang Zhou, Chonghan Xia, Licheng Sun, Yongbo Kuang
{"title":"用于光电化学水分离的可扩展还原氧化石墨烯导电层颗粒光电阴极","authors":"Ruiyuan Sun, Qinglu Liu, Qitao Liu, Weilong Qin, Jiabo Le, Xiaopei Ren, Muhammad Bilal Akbar, Yang Zhou, Chonghan Xia, Licheng Sun, Yongbo Kuang","doi":"10.1002/admt.202400392","DOIUrl":null,"url":null,"abstract":"Particle transfer method photoelectrodes show superior photoelectrochemical performance compared to traditional powder‐based methods, making them a promising solution for solar water splitting in sustainable energy. This study introduces an innovative nonvacuum particle transfer method for fabricating photoelectrodes on a conductive carbon substrate, addressing the challenges associated with the high costs and vacuum deposition processes of traditional methods. Utilizing a p‐type CuFeO<jats:sub>2</jats:sub> powder semiconductor, a unique substrate is developed by applying a graphene oxide layer mixed with a small amount of silica binder on the particle layer's backside through ultrasonic atomization spraying. This layer is converted into multilayered reduced graphene oxide (ML‐rGO) via wet chemical reduction, resulting in a substrate boasting a high work function (4.8 eV), alongside remarkable chemical stability, mechanical strength, and conductivity. The fabricated CuFeO<jats:sub>2</jats:sub> photocathode demonstrated an onset potential of 0.97 V versus RHE and a photocurrent density of 1.5 mA cm<jats:sup>−2</jats:sup> at 0.6 V versus RHE for H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> reduction. Further enhancement is achieved by depositing Pt as a cocatalyst, which ensured stability for over 20 h in an alkaline medium for water splitting. This study sets a new benchmark for developing CuFeO<jats:sub>2</jats:sub>‐based photocathodes, paving the way for broader particle transfer method applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Reduced Graphene Oxide Conductive Layer‐Based Particulate Photocathodes for Photoelectrochemical Water Splitting\",\"authors\":\"Ruiyuan Sun, Qinglu Liu, Qitao Liu, Weilong Qin, Jiabo Le, Xiaopei Ren, Muhammad Bilal Akbar, Yang Zhou, Chonghan Xia, Licheng Sun, Yongbo Kuang\",\"doi\":\"10.1002/admt.202400392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle transfer method photoelectrodes show superior photoelectrochemical performance compared to traditional powder‐based methods, making them a promising solution for solar water splitting in sustainable energy. This study introduces an innovative nonvacuum particle transfer method for fabricating photoelectrodes on a conductive carbon substrate, addressing the challenges associated with the high costs and vacuum deposition processes of traditional methods. Utilizing a p‐type CuFeO<jats:sub>2</jats:sub> powder semiconductor, a unique substrate is developed by applying a graphene oxide layer mixed with a small amount of silica binder on the particle layer's backside through ultrasonic atomization spraying. This layer is converted into multilayered reduced graphene oxide (ML‐rGO) via wet chemical reduction, resulting in a substrate boasting a high work function (4.8 eV), alongside remarkable chemical stability, mechanical strength, and conductivity. The fabricated CuFeO<jats:sub>2</jats:sub> photocathode demonstrated an onset potential of 0.97 V versus RHE and a photocurrent density of 1.5 mA cm<jats:sup>−2</jats:sup> at 0.6 V versus RHE for H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> reduction. Further enhancement is achieved by depositing Pt as a cocatalyst, which ensured stability for over 20 h in an alkaline medium for water splitting. This study sets a new benchmark for developing CuFeO<jats:sub>2</jats:sub>‐based photocathodes, paving the way for broader particle transfer method applications.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的粉末法相比,颗粒转移法光电极显示出更优越的光电化学性能,使其成为可持续能源中太阳能水分离的一种前景广阔的解决方案。本研究介绍了一种在导电碳基底上制造光电极的创新型非真空粒子转移方法,解决了传统方法的高成本和真空沉积工艺带来的挑战。利用 p 型 CuFeO2 粉末半导体,通过超声波雾化喷涂在颗粒层背面涂上一层氧化石墨烯和少量二氧化硅粘合剂,从而开发出一种独特的基底。这层氧化石墨烯通过湿化学还原法转化为多层还原氧化石墨烯(ML-rGO),从而产生了一种具有高功函数(4.8 eV)、出色的化学稳定性、机械强度和导电性的基底。制备的 CuFeO2 阴极在还原 H2O2 时的起始电位为 0.97 V(相对于 RHE),光电流密度为 1.5 mA cm-2(相对于 RHE 为 0.6 V)。通过沉积铂作为共催化剂,可进一步提高其性能,从而确保其在碱性介质中超过 20 小时的水分离稳定性。这项研究为开发基于 CuFeO2 的光电阴极树立了新的标杆,为更广泛的粒子转移法应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Reduced Graphene Oxide Conductive Layer‐Based Particulate Photocathodes for Photoelectrochemical Water Splitting
Particle transfer method photoelectrodes show superior photoelectrochemical performance compared to traditional powder‐based methods, making them a promising solution for solar water splitting in sustainable energy. This study introduces an innovative nonvacuum particle transfer method for fabricating photoelectrodes on a conductive carbon substrate, addressing the challenges associated with the high costs and vacuum deposition processes of traditional methods. Utilizing a p‐type CuFeO2 powder semiconductor, a unique substrate is developed by applying a graphene oxide layer mixed with a small amount of silica binder on the particle layer's backside through ultrasonic atomization spraying. This layer is converted into multilayered reduced graphene oxide (ML‐rGO) via wet chemical reduction, resulting in a substrate boasting a high work function (4.8 eV), alongside remarkable chemical stability, mechanical strength, and conductivity. The fabricated CuFeO2 photocathode demonstrated an onset potential of 0.97 V versus RHE and a photocurrent density of 1.5 mA cm−2 at 0.6 V versus RHE for H2O2 reduction. Further enhancement is achieved by depositing Pt as a cocatalyst, which ensured stability for over 20 h in an alkaline medium for water splitting. This study sets a new benchmark for developing CuFeO2‐based photocathodes, paving the way for broader particle transfer method applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1