UADAPy:不确定性感知可视化和分析工具箱

Patrick Paetzold, David Hägele, Marina Evers, Daniel Weiskopf, Oliver Deussen
{"title":"UADAPy:不确定性感知可视化和分析工具箱","authors":"Patrick Paetzold, David Hägele, Marina Evers, Daniel Weiskopf, Oliver Deussen","doi":"arxiv-2409.10217","DOIUrl":null,"url":null,"abstract":"Current research provides methods to communicate uncertainty and adapts\nclassical algorithms of the visualization pipeline to take the uncertainty into\naccount. Various existing visualization frameworks include methods to present\nuncertain data but do not offer transformation techniques tailored to uncertain\ndata. Therefore, we propose a software package for uncertainty-aware data\nanalysis in Python (UADAPy) offering methods for uncertain data along the\nvisualization pipeline. We aim to provide a platform that is the foundation for\nfurther integration of uncertainty algorithms and visualizations. It provides\ncommon utility functionality to support research in uncertainty-aware\nvisualization algorithms and makes state-of-the-art research results accessible\nto the end user. The project is available at\nhttps://github.com/UniStuttgart-VISUS/uadapy.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"208 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UADAPy: An Uncertainty-Aware Visualization and Analysis Toolbox\",\"authors\":\"Patrick Paetzold, David Hägele, Marina Evers, Daniel Weiskopf, Oliver Deussen\",\"doi\":\"arxiv-2409.10217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current research provides methods to communicate uncertainty and adapts\\nclassical algorithms of the visualization pipeline to take the uncertainty into\\naccount. Various existing visualization frameworks include methods to present\\nuncertain data but do not offer transformation techniques tailored to uncertain\\ndata. Therefore, we propose a software package for uncertainty-aware data\\nanalysis in Python (UADAPy) offering methods for uncertain data along the\\nvisualization pipeline. We aim to provide a platform that is the foundation for\\nfurther integration of uncertainty algorithms and visualizations. It provides\\ncommon utility functionality to support research in uncertainty-aware\\nvisualization algorithms and makes state-of-the-art research results accessible\\nto the end user. The project is available at\\nhttps://github.com/UniStuttgart-VISUS/uadapy.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究提供了传达不确定性的方法,并调整了可视化管道的经典算法,以将不确定性考虑在内。现有的各种可视化框架都包含呈现不确定数据的方法,但没有提供针对不确定数据的转换技术。因此,我们提出了一个 Python 不确定性感知数据分析软件包(UADAPy),为可视化流程中的不确定性数据提供方法。我们的目标是提供一个平台,作为进一步整合不确定性算法和可视化的基础。它提供了通用的实用功能,以支持不确定性感知可视化算法的研究,并使终端用户能够访问最先进的研究成果。该项目的网址是:https://github.com/UniStuttgart-VISUS/uadapy。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UADAPy: An Uncertainty-Aware Visualization and Analysis Toolbox
Current research provides methods to communicate uncertainty and adapts classical algorithms of the visualization pipeline to take the uncertainty into account. Various existing visualization frameworks include methods to present uncertain data but do not offer transformation techniques tailored to uncertain data. Therefore, we propose a software package for uncertainty-aware data analysis in Python (UADAPy) offering methods for uncertain data along the visualization pipeline. We aim to provide a platform that is the foundation for further integration of uncertainty algorithms and visualizations. It provides common utility functionality to support research in uncertainty-aware visualization algorithms and makes state-of-the-art research results accessible to the end user. The project is available at https://github.com/UniStuttgart-VISUS/uadapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1