价值指南:人机交互基本价值观框架

Hua Shen, Tiffany Knearem, Reshmi Ghosh, Yu-Ju Yang, Tanushree Mitra, Yun Huang
{"title":"价值指南:人机交互基本价值观框架","authors":"Hua Shen, Tiffany Knearem, Reshmi Ghosh, Yu-Ju Yang, Tanushree Mitra, Yun Huang","doi":"arxiv-2409.09586","DOIUrl":null,"url":null,"abstract":"As AI systems become more advanced, ensuring their alignment with a diverse\nrange of individuals and societal values becomes increasingly critical. But how\ncan we capture fundamental human values and assess the degree to which AI\nsystems align with them? We introduce ValueCompass, a framework of fundamental\nvalues, grounded in psychological theory and a systematic review, to identify\nand evaluate human-AI alignment. We apply ValueCompass to measure the value\nalignment of humans and language models (LMs) across four real-world vignettes:\ncollaborative writing, education, public sectors, and healthcare. Our findings\nuncover risky misalignment between humans and LMs, such as LMs agreeing with\nvalues like \"Choose Own Goals\", which are largely disagreed by humans. We also\nobserve values vary across vignettes, underscoring the necessity for\ncontext-aware AI alignment strategies. This work provides insights into the\ndesign space of human-AI alignment, offering foundations for developing AI that\nresponsibly reflects societal values and ethics.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ValueCompass: A Framework of Fundamental Values for Human-AI Alignment\",\"authors\":\"Hua Shen, Tiffany Knearem, Reshmi Ghosh, Yu-Ju Yang, Tanushree Mitra, Yun Huang\",\"doi\":\"arxiv-2409.09586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As AI systems become more advanced, ensuring their alignment with a diverse\\nrange of individuals and societal values becomes increasingly critical. But how\\ncan we capture fundamental human values and assess the degree to which AI\\nsystems align with them? We introduce ValueCompass, a framework of fundamental\\nvalues, grounded in psychological theory and a systematic review, to identify\\nand evaluate human-AI alignment. We apply ValueCompass to measure the value\\nalignment of humans and language models (LMs) across four real-world vignettes:\\ncollaborative writing, education, public sectors, and healthcare. Our findings\\nuncover risky misalignment between humans and LMs, such as LMs agreeing with\\nvalues like \\\"Choose Own Goals\\\", which are largely disagreed by humans. We also\\nobserve values vary across vignettes, underscoring the necessity for\\ncontext-aware AI alignment strategies. This work provides insights into the\\ndesign space of human-AI alignment, offering foundations for developing AI that\\nresponsibly reflects societal values and ethics.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能系统变得越来越先进,确保它们与不同的个人和社会价值观保持一致变得越来越重要。但是,我们如何捕捉人类的基本价值观,并评估人工智能系统与这些价值观的吻合程度呢?我们介绍了价值指南(ValueCompass),这是一个以心理学理论和系统回顾为基础的基本价值观框架,用于识别和评估人类与人工智能的一致性。我们应用ValueCompass来衡量人类和语言模型(LM)在四个现实世界中的价值一致性:协作写作、教育、公共部门和医疗保健。我们的发现揭示了人类与语言模型之间存在的风险性错位,例如,语言模型认同 "选择自己的目标 "等价值观,而人类在很大程度上不认同这些价值观。我们还观察到不同小故事中的价值观各不相同,这凸显了具有情境感知能力的人工智能对齐策略的必要性。这项研究为人类与人工智能协调的设计空间提供了见解,为开发能负责任地反映社会价值观和伦理的人工智能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ValueCompass: A Framework of Fundamental Values for Human-AI Alignment
As AI systems become more advanced, ensuring their alignment with a diverse range of individuals and societal values becomes increasingly critical. But how can we capture fundamental human values and assess the degree to which AI systems align with them? We introduce ValueCompass, a framework of fundamental values, grounded in psychological theory and a systematic review, to identify and evaluate human-AI alignment. We apply ValueCompass to measure the value alignment of humans and language models (LMs) across four real-world vignettes: collaborative writing, education, public sectors, and healthcare. Our findings uncover risky misalignment between humans and LMs, such as LMs agreeing with values like "Choose Own Goals", which are largely disagreed by humans. We also observe values vary across vignettes, underscoring the necessity for context-aware AI alignment strategies. This work provides insights into the design space of human-AI alignment, offering foundations for developing AI that responsibly reflects societal values and ethics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1