{"title":"天体物理等离子体中的动力学阿尔芬孤波","authors":"M. M. Hasan, M. R. Hossen, A. A. Mamun","doi":"10.1063/5.0226568","DOIUrl":null,"url":null,"abstract":"The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"42 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Alfvén solitary waves in astrophysical plasmas\",\"authors\":\"M. M. Hasan, M. R. Hossen, A. A. Mamun\",\"doi\":\"10.1063/5.0226568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226568\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0226568","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetic Alfvén solitary waves in astrophysical plasmas
The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.