微悬臂传感器监控下穿孔挤压里加板之间的 MHD 三元纳米流体流动的数值研究与敏感性分析

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-09-13 DOI:10.1063/5.0218608
Rajakumari Rammoorthi, Dhivya Mohanavel
{"title":"微悬臂传感器监控下穿孔挤压里加板之间的 MHD 三元纳米流体流动的数值研究与敏感性分析","authors":"Rajakumari Rammoorthi, Dhivya Mohanavel","doi":"10.1063/5.0218608","DOIUrl":null,"url":null,"abstract":"This study addresses the magnetohydrodynamic flow of a squeezed ternary nanofluid between two horizontal parallel Riga plates. The importance of this problem lies in understanding the complex interactions between magnetic fields, nanofluid dynamics, and heat transfer, which are crucial for optimizing thermal management systems. This study utilizes a numerical approach, specifically a collocation method implemented in MATLAB, to solve the governing equations with high precision. Key results acquired indicate that the magnetic field and Riga plate actuator significantly enhance fluid velocity, whereas the variation in thermal conductivity, radiation, and viscous dissipation increases the temperature distribution. Quantitative analysis illustrates the impact of all these factors on skin friction and Nusselt number. Sensitivity analysis using the response surface methodology exhibits the conditions for optimized heat transfer. The novelty of this work lies in its comprehensive analysis of the magnetohydrodynamic flow in the presence of a microcantilever sensor, which provides deep understanding of optimization of heat transfer rates. This research offers a detailed examination of the combined effects of various physical phenomena and also validates them through graphical comparisons with existing studies.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"4 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation and sensitivity analysis of MHD ternary nanofluid flow between perforated squeezed Riga plates under the surveillance of microcantilever sensor\",\"authors\":\"Rajakumari Rammoorthi, Dhivya Mohanavel\",\"doi\":\"10.1063/5.0218608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the magnetohydrodynamic flow of a squeezed ternary nanofluid between two horizontal parallel Riga plates. The importance of this problem lies in understanding the complex interactions between magnetic fields, nanofluid dynamics, and heat transfer, which are crucial for optimizing thermal management systems. This study utilizes a numerical approach, specifically a collocation method implemented in MATLAB, to solve the governing equations with high precision. Key results acquired indicate that the magnetic field and Riga plate actuator significantly enhance fluid velocity, whereas the variation in thermal conductivity, radiation, and viscous dissipation increases the temperature distribution. Quantitative analysis illustrates the impact of all these factors on skin friction and Nusselt number. Sensitivity analysis using the response surface methodology exhibits the conditions for optimized heat transfer. The novelty of this work lies in its comprehensive analysis of the magnetohydrodynamic flow in the presence of a microcantilever sensor, which provides deep understanding of optimization of heat transfer rates. This research offers a detailed examination of the combined effects of various physical phenomena and also validates them through graphical comparisons with existing studies.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218608\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0218608","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了挤压三元纳米流体在两块水平平行的里加板之间的磁流体流动。该问题的重要性在于理解磁场、纳米流体动力学和热传递之间复杂的相互作用,这对于优化热管理系统至关重要。本研究采用数值方法,特别是在 MATLAB 中实施的配位法,来高精度地求解支配方程。获得的主要结果表明,磁场和里加板致动器显著提高了流体速度,而热导率、辐射和粘性耗散的变化则增加了温度分布。定量分析说明了所有这些因素对表皮摩擦和努塞尔特数的影响。利用响应面方法进行的敏感性分析表明了优化传热的条件。这项工作的新颖之处在于它对存在微悬臂传感器的磁流体流动进行了全面分析,为优化传热率提供了深刻的理解。这项研究详细考察了各种物理现象的综合影响,并通过与现有研究的图形比较进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation and sensitivity analysis of MHD ternary nanofluid flow between perforated squeezed Riga plates under the surveillance of microcantilever sensor
This study addresses the magnetohydrodynamic flow of a squeezed ternary nanofluid between two horizontal parallel Riga plates. The importance of this problem lies in understanding the complex interactions between magnetic fields, nanofluid dynamics, and heat transfer, which are crucial for optimizing thermal management systems. This study utilizes a numerical approach, specifically a collocation method implemented in MATLAB, to solve the governing equations with high precision. Key results acquired indicate that the magnetic field and Riga plate actuator significantly enhance fluid velocity, whereas the variation in thermal conductivity, radiation, and viscous dissipation increases the temperature distribution. Quantitative analysis illustrates the impact of all these factors on skin friction and Nusselt number. Sensitivity analysis using the response surface methodology exhibits the conditions for optimized heat transfer. The novelty of this work lies in its comprehensive analysis of the magnetohydrodynamic flow in the presence of a microcantilever sensor, which provides deep understanding of optimization of heat transfer rates. This research offers a detailed examination of the combined effects of various physical phenomena and also validates them through graphical comparisons with existing studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Dimensional analysis of diffusive association rate equations. Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1