Mostafizur Rahaman, Mahmudul Hasan, Rayan Md. Moinuddin, Md. Nasirul Islam
{"title":"针对过氧化物太阳能电池(PSC)结构的铅基和无铅吸收剂材料的数值优化:SCAPS-1D 模拟","authors":"Mostafizur Rahaman, Mahmudul Hasan, Rayan Md. Moinuddin, Md. Nasirul Islam","doi":"10.1063/5.0217486","DOIUrl":null,"url":null,"abstract":"Due to the negative environmental impact, the usage of lead in perovskite solar cells has been a matter of concern. Moreover, a suitable replacement of Pb with similar optoelectrical properties is hard to find. MAPbI3 is the most common material that has been studied for solar PV applications. Compared to MAPbI3, Cs2TiBr6 and MASnI3 have been less studied. In this study, their potential in solar cell applications has been investigated. Titanium and tin are two materials that have been used in numerous studies as an alternative to Pb-based perovskite. However, the lack of optimization and combinations of electron transport layer (ETL) and hole transport layer (HTL) material choices leave a lot to be desired. In this study, two different perovskite absorber layers, Cs2TiBr6 and MASnI3, have been simulated, optimized, and compared with Pb-based MAPbI3, where La-doped BaSnO3 is used as ETL and CuSbS2 as HTL in identical cell architectures. La-doped BaSnO3 is well known for its high electron mobility and excellent optical properties, which makes it an ideal candidate for ETL. On the other hand, CuSbS2 has appropriate band alignment with perovskite materials and has a high absorption profile to be used as HTL. The simulations were analyzed by optimizing key parameters like absorber layer thickness, defect density, and temperature. The optimized device architecture reached the power conversion efficiencies (PCE) of 29.45% for MASnI3, followed by MAPbI3 (22.47%) and Cs2TiBr6 (21.96%). The result indicates that high performance lead-free perovskite cells are very much possible through proper material selection and optimization.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"71 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of lead-based and lead-free absorber materials for perovskite solar cell (PSC) architectures: A SCAPS-1D simulation\",\"authors\":\"Mostafizur Rahaman, Mahmudul Hasan, Rayan Md. Moinuddin, Md. Nasirul Islam\",\"doi\":\"10.1063/5.0217486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the negative environmental impact, the usage of lead in perovskite solar cells has been a matter of concern. Moreover, a suitable replacement of Pb with similar optoelectrical properties is hard to find. MAPbI3 is the most common material that has been studied for solar PV applications. Compared to MAPbI3, Cs2TiBr6 and MASnI3 have been less studied. In this study, their potential in solar cell applications has been investigated. Titanium and tin are two materials that have been used in numerous studies as an alternative to Pb-based perovskite. However, the lack of optimization and combinations of electron transport layer (ETL) and hole transport layer (HTL) material choices leave a lot to be desired. In this study, two different perovskite absorber layers, Cs2TiBr6 and MASnI3, have been simulated, optimized, and compared with Pb-based MAPbI3, where La-doped BaSnO3 is used as ETL and CuSbS2 as HTL in identical cell architectures. La-doped BaSnO3 is well known for its high electron mobility and excellent optical properties, which makes it an ideal candidate for ETL. On the other hand, CuSbS2 has appropriate band alignment with perovskite materials and has a high absorption profile to be used as HTL. The simulations were analyzed by optimizing key parameters like absorber layer thickness, defect density, and temperature. The optimized device architecture reached the power conversion efficiencies (PCE) of 29.45% for MASnI3, followed by MAPbI3 (22.47%) and Cs2TiBr6 (21.96%). The result indicates that high performance lead-free perovskite cells are very much possible through proper material selection and optimization.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217486\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0217486","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical optimization of lead-based and lead-free absorber materials for perovskite solar cell (PSC) architectures: A SCAPS-1D simulation
Due to the negative environmental impact, the usage of lead in perovskite solar cells has been a matter of concern. Moreover, a suitable replacement of Pb with similar optoelectrical properties is hard to find. MAPbI3 is the most common material that has been studied for solar PV applications. Compared to MAPbI3, Cs2TiBr6 and MASnI3 have been less studied. In this study, their potential in solar cell applications has been investigated. Titanium and tin are two materials that have been used in numerous studies as an alternative to Pb-based perovskite. However, the lack of optimization and combinations of electron transport layer (ETL) and hole transport layer (HTL) material choices leave a lot to be desired. In this study, two different perovskite absorber layers, Cs2TiBr6 and MASnI3, have been simulated, optimized, and compared with Pb-based MAPbI3, where La-doped BaSnO3 is used as ETL and CuSbS2 as HTL in identical cell architectures. La-doped BaSnO3 is well known for its high electron mobility and excellent optical properties, which makes it an ideal candidate for ETL. On the other hand, CuSbS2 has appropriate band alignment with perovskite materials and has a high absorption profile to be used as HTL. The simulations were analyzed by optimizing key parameters like absorber layer thickness, defect density, and temperature. The optimized device architecture reached the power conversion efficiencies (PCE) of 29.45% for MASnI3, followed by MAPbI3 (22.47%) and Cs2TiBr6 (21.96%). The result indicates that high performance lead-free perovskite cells are very much possible through proper material selection and optimization.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.