VAE Explainer:利用交互式可视化补充学习变异自动编码器

Donald Bertucci, Alex Endert
{"title":"VAE Explainer:利用交互式可视化补充学习变异自动编码器","authors":"Donald Bertucci, Alex Endert","doi":"arxiv-2409.09011","DOIUrl":null,"url":null,"abstract":"Variational Autoencoders are widespread in Machine Learning, but are\ntypically explained with dense math notation or static code examples. This\npaper presents VAE Explainer, an interactive Variational Autoencoder running in\nthe browser to supplement existing static documentation (e.g., Keras Code\nExamples). VAE Explainer adds interactions to the VAE summary with interactive\nmodel inputs, latent space, and output. VAE Explainer connects the high-level\nunderstanding with the implementation: annotated code and a live computational\ngraph. The VAE Explainer interactive visualization is live at\nhttps://xnought.github.io/vae-explainer and the code is open source at\nhttps://github.com/xnought/vae-explainer.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VAE Explainer: Supplement Learning Variational Autoencoders with Interactive Visualization\",\"authors\":\"Donald Bertucci, Alex Endert\",\"doi\":\"arxiv-2409.09011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational Autoencoders are widespread in Machine Learning, but are\\ntypically explained with dense math notation or static code examples. This\\npaper presents VAE Explainer, an interactive Variational Autoencoder running in\\nthe browser to supplement existing static documentation (e.g., Keras Code\\nExamples). VAE Explainer adds interactions to the VAE summary with interactive\\nmodel inputs, latent space, and output. VAE Explainer connects the high-level\\nunderstanding with the implementation: annotated code and a live computational\\ngraph. The VAE Explainer interactive visualization is live at\\nhttps://xnought.github.io/vae-explainer and the code is open source at\\nhttps://github.com/xnought/vae-explainer.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变分自动编码器在机器学习领域非常普遍,但通常使用密集的数学符号或静态代码示例进行解释。本文介绍了 VAE Explainer,这是一种在浏览器中运行的交互式变分自动编码器,用于补充现有的静态文档(如 Keras 代码示例)。VAE Explainer 通过交互式模型输入、潜在空间和输出为 VAE 摘要添加了交互。VAE Explainer 将高层次的理解与实现联系起来:注释代码和实时计算图。VAE Explainer 交互式可视化可在https://xnought.github.io/vae-explainer 上运行,代码可在https://github.com/xnought/vae-explainer 上开源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VAE Explainer: Supplement Learning Variational Autoencoders with Interactive Visualization
Variational Autoencoders are widespread in Machine Learning, but are typically explained with dense math notation or static code examples. This paper presents VAE Explainer, an interactive Variational Autoencoder running in the browser to supplement existing static documentation (e.g., Keras Code Examples). VAE Explainer adds interactions to the VAE summary with interactive model inputs, latent space, and output. VAE Explainer connects the high-level understanding with the implementation: annotated code and a live computational graph. The VAE Explainer interactive visualization is live at https://xnought.github.io/vae-explainer and the code is open source at https://github.com/xnought/vae-explainer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1