A. Card;A. Deller;M. R. Stoneking;J. von der Linden;E. V. Stenson
{"title":"APEX-LD 高温超导线圈的 FPGA 稳定磁悬浮","authors":"A. Card;A. Deller;M. R. Stoneking;J. von der Linden;E. V. Stenson","doi":"10.1109/TASC.2024.3462796","DOIUrl":null,"url":null,"abstract":"In this article, we demonstrate in-vacuum magnetic levitation of a compact high-temperature superconducting coil, which has been designed for magnetic confinement of an electron–positron pair plasma. The closed no-insulation rare-earth barium copper oxide coil was energized with a persistent current to generate a dipole magnetic field and then magnetically levitated by a water-cooled copper lifting coil located above. The vertical position of the floating coil was measured by an array of laser position sensors. Stable levitation was achieved by continuous adjustment of the lifting coil current using a 1-kHz proportional–integral–derivative feedback loop implemented by a field-programmable gate array. The feedback parameters were optimized with a 1-D simulation of the levitation system. A levitation time in excess of 3 h was achieved with a mean vertical displacement from the set point position of \n<inline-formula><tex-math>$-\\text{3 } \\mu \\rm {\\text{m}}$</tex-math></inline-formula>\n and a standard deviation of \n<inline-formula><tex-math>$\\sigma _{z} = \\text{18 }\\mu \\rm {\\text{m}}$</tex-math></inline-formula>\n.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 9","pages":"1-9"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA-Stabilized Magnetic Levitation of the APEX-LD High-Temperature Superconducting Coil\",\"authors\":\"A. Card;A. Deller;M. R. Stoneking;J. von der Linden;E. V. Stenson\",\"doi\":\"10.1109/TASC.2024.3462796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we demonstrate in-vacuum magnetic levitation of a compact high-temperature superconducting coil, which has been designed for magnetic confinement of an electron–positron pair plasma. The closed no-insulation rare-earth barium copper oxide coil was energized with a persistent current to generate a dipole magnetic field and then magnetically levitated by a water-cooled copper lifting coil located above. The vertical position of the floating coil was measured by an array of laser position sensors. Stable levitation was achieved by continuous adjustment of the lifting coil current using a 1-kHz proportional–integral–derivative feedback loop implemented by a field-programmable gate array. The feedback parameters were optimized with a 1-D simulation of the levitation system. A levitation time in excess of 3 h was achieved with a mean vertical displacement from the set point position of \\n<inline-formula><tex-math>$-\\\\text{3 } \\\\mu \\\\rm {\\\\text{m}}$</tex-math></inline-formula>\\n and a standard deviation of \\n<inline-formula><tex-math>$\\\\sigma _{z} = \\\\text{18 }\\\\mu \\\\rm {\\\\text{m}}$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 9\",\"pages\":\"1-9\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682557/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10682557/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
FPGA-Stabilized Magnetic Levitation of the APEX-LD High-Temperature Superconducting Coil
In this article, we demonstrate in-vacuum magnetic levitation of a compact high-temperature superconducting coil, which has been designed for magnetic confinement of an electron–positron pair plasma. The closed no-insulation rare-earth barium copper oxide coil was energized with a persistent current to generate a dipole magnetic field and then magnetically levitated by a water-cooled copper lifting coil located above. The vertical position of the floating coil was measured by an array of laser position sensors. Stable levitation was achieved by continuous adjustment of the lifting coil current using a 1-kHz proportional–integral–derivative feedback loop implemented by a field-programmable gate array. The feedback parameters were optimized with a 1-D simulation of the levitation system. A levitation time in excess of 3 h was achieved with a mean vertical displacement from the set point position of
$-\text{3 } \mu \rm {\text{m}}$
and a standard deviation of
$\sigma _{z} = \text{18 }\mu \rm {\text{m}}$
.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.