实现以数据为中心的 RLHF:用于偏好数据集比较的简单指标

Judy Hanwen Shen, Archit Sharma, Jun Qin
{"title":"实现以数据为中心的 RLHF:用于偏好数据集比较的简单指标","authors":"Judy Hanwen Shen, Archit Sharma, Jun Qin","doi":"arxiv-2409.09603","DOIUrl":null,"url":null,"abstract":"The goal of aligning language models to human preferences requires data that\nreveal these preferences. Ideally, time and money can be spent carefully\ncollecting and tailoring bespoke preference data to each downstream\napplication. However, in practice, a select few publicly available preference\ndatasets are often used to train reward models for reinforcement learning from\nhuman feedback (RLHF). While new preference datasets are being introduced with\nincreasing frequency, there are currently no existing efforts to measure and\ncompare these datasets. In this paper, we systematically study preference\ndatasets through three perspectives: scale, label noise, and information\ncontent. We propose specific metrics for each of these perspectives and uncover\ndifferent axes of comparison for a better understanding of preference datasets.\nOur work is a first step towards a data-centric approach to alignment by\nproviding perspectives that aid in training efficiency and iterative data\ncollection for RLHF.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Data-Centric RLHF: Simple Metrics for Preference Dataset Comparison\",\"authors\":\"Judy Hanwen Shen, Archit Sharma, Jun Qin\",\"doi\":\"arxiv-2409.09603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of aligning language models to human preferences requires data that\\nreveal these preferences. Ideally, time and money can be spent carefully\\ncollecting and tailoring bespoke preference data to each downstream\\napplication. However, in practice, a select few publicly available preference\\ndatasets are often used to train reward models for reinforcement learning from\\nhuman feedback (RLHF). While new preference datasets are being introduced with\\nincreasing frequency, there are currently no existing efforts to measure and\\ncompare these datasets. In this paper, we systematically study preference\\ndatasets through three perspectives: scale, label noise, and information\\ncontent. We propose specific metrics for each of these perspectives and uncover\\ndifferent axes of comparison for a better understanding of preference datasets.\\nOur work is a first step towards a data-centric approach to alignment by\\nproviding perspectives that aid in training efficiency and iterative data\\ncollection for RLHF.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要实现语言模型与人类偏好相一致的目标,需要能够揭示这些偏好的数据。理想情况下,我们可以花费时间和金钱仔细收集和定制偏好数据,以满足每个下游应用的需要。然而,在实践中,通常只有少数几个公开的偏好数据集被用于训练从人类反馈中强化学习(RLHF)的奖励模型。虽然新的偏好数据集被越来越频繁地引入,但目前还没有对这些数据集进行测量和比较的工作。在本文中,我们从尺度、标签噪声和信息内容三个角度系统地研究了偏好数据集。通过提供有助于提高 RLHF 的训练效率和迭代数据收集的视角,我们的工作向以数据为中心的配准方法迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Data-Centric RLHF: Simple Metrics for Preference Dataset Comparison
The goal of aligning language models to human preferences requires data that reveal these preferences. Ideally, time and money can be spent carefully collecting and tailoring bespoke preference data to each downstream application. However, in practice, a select few publicly available preference datasets are often used to train reward models for reinforcement learning from human feedback (RLHF). While new preference datasets are being introduced with increasing frequency, there are currently no existing efforts to measure and compare these datasets. In this paper, we systematically study preference datasets through three perspectives: scale, label noise, and information content. We propose specific metrics for each of these perspectives and uncover different axes of comparison for a better understanding of preference datasets. Our work is a first step towards a data-centric approach to alignment by providing perspectives that aid in training efficiency and iterative data collection for RLHF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1