利用基于二乙氨基乙基葡聚糖的连续多重离子聚合物层涂层,通过 CZE-MS 对单克隆抗体进行电荷变异分析

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS ELECTROPHORESIS Pub Date : 2024-09-17 DOI:10.1002/elps.202400084
Alisa Höchsmann, Laura Dhellemmes, Laurent Leclercq, Hervé Cottet, Christian Neusüß
{"title":"利用基于二乙氨基乙基葡聚糖的连续多重离子聚合物层涂层,通过 CZE-MS 对单克隆抗体进行电荷变异分析","authors":"Alisa Höchsmann, Laura Dhellemmes, Laurent Leclercq, Hervé Cottet, Christian Neusüß","doi":"10.1002/elps.202400084","DOIUrl":null,"url":null,"abstract":"The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization‐mass spectrometry (ESI‐MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE‐ESI‐MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic‐polymer layer coating was developed based on diethylaminoethyl‐dextran–poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C‐terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE‐MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge variant analysis of monoclonal antibodies by CZE‐MS using a successive multiple ionic‐polymer layer coating based on diethylaminoethyl‐dextran\",\"authors\":\"Alisa Höchsmann, Laura Dhellemmes, Laurent Leclercq, Hervé Cottet, Christian Neusüß\",\"doi\":\"10.1002/elps.202400084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization‐mass spectrometry (ESI‐MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE‐ESI‐MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic‐polymer layer coating was developed based on diethylaminoethyl‐dextran–poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C‐terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE‐MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.202400084\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

药物单克隆抗体(mAbs)杂质的表征对其功能和安全性至关重要。毛细管区带电泳(CZE)是分离 mAbs 电荷变体的最有效工具之一;然而,由于目前使用的背景电解质(BGEs)与电喷雾电离质谱(ESI-MS)不兼容,因此峰值表征仍然很困难。本文介绍了一种利用 CZE-ESI-MS 分离完整 mAb 电荷变体的方法,该方法结合了阳离子毛细管涂层和酸性背景电解质。因此,我们开发了一种基于二乙氨基乙基-葡聚糖-聚(苯乙烯磺酸钠)的连续多离子聚合物层涂层。这种涂层能产生相对较低的反向电渗流(EOF),其绝对迁移率略高于抗体的迁移率,从而能分离迁移率略有不同的变体。使用 USP mAb003 证明了这种涂层的潜力,它可以将 C 端赖氨酸变体与主体分离,还可以分离几种酸性变体和单糖基化 mAb 形式。所介绍的 CZE-MS 方法还可用于分离一系列其他抗体的电荷变体,如英夫利昔单抗、NISTmAB(美国国家标准与技术研究院标准物质)、阿达木单抗和曲妥珠单抗,这表明该方法普遍适用于 mAb 蛋白形式的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge variant analysis of monoclonal antibodies by CZE‐MS using a successive multiple ionic‐polymer layer coating based on diethylaminoethyl‐dextran
The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization‐mass spectrometry (ESI‐MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE‐ESI‐MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic‐polymer layer coating was developed based on diethylaminoethyl‐dextran–poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C‐terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE‐MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
期刊最新文献
A Micro-Flow Liquid Chromatography-Mass Spectrometry Method for the Quantification of Oxylipins in Volume-Limited Human Plasma. Dynamics of Viscous Jeffrey Fluid Flow Through Darcian Medium With Hall Current and Quadratic Buoyancy. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Fatty Acid Analysis by Capillary Electrophoresis and Contactless Conductivity Detection for Future Life Detection Missions. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1