将量化引入层次图重写语言

Haruto Mishina, Kazunori Ueda
{"title":"将量化引入层次图重写语言","authors":"Haruto Mishina, Kazunori Ueda","doi":"arxiv-2409.11015","DOIUrl":null,"url":null,"abstract":"LMNtal is a programming and modeling language based on hierarchical graph\nrewriting that uses logical variables to represent connectivity and membranes\nto represent hierarchy. On the theoretical side, it allows logical\ninterpretation based on intuitionistic linear logic; on the practical side, its\nfull-fledged implementation supports a graph-based parallel model checker and\nhas been used to model diverse applications including various computational\nmodels. This paper discuss how we extend LMNtal to QLMNtal (LMNtal with\nQuantification) to further enhance the usefulness of hierarchical graph\nrewriting for high-level modeling by introducing quantifiers into rewriting as\nwell as matching. Those quantifiers allows us to express universal\nquantification, cardinality and non-existence in an integrated manner. Unlike\nother attempts to introduce quantifiers into graph rewriting, QLMNtal has\nterm-based syntax, whose semantics is smoothly integrated into the small-step\nsemantics of the base language LMNtal. The proposed constructs allow combined\nand nested use of quantifiers within individual rewrite rules.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing Quantification into a Hierarchical Graph Rewriting Language\",\"authors\":\"Haruto Mishina, Kazunori Ueda\",\"doi\":\"arxiv-2409.11015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LMNtal is a programming and modeling language based on hierarchical graph\\nrewriting that uses logical variables to represent connectivity and membranes\\nto represent hierarchy. On the theoretical side, it allows logical\\ninterpretation based on intuitionistic linear logic; on the practical side, its\\nfull-fledged implementation supports a graph-based parallel model checker and\\nhas been used to model diverse applications including various computational\\nmodels. This paper discuss how we extend LMNtal to QLMNtal (LMNtal with\\nQuantification) to further enhance the usefulness of hierarchical graph\\nrewriting for high-level modeling by introducing quantifiers into rewriting as\\nwell as matching. Those quantifiers allows us to express universal\\nquantification, cardinality and non-existence in an integrated manner. Unlike\\nother attempts to introduce quantifiers into graph rewriting, QLMNtal has\\nterm-based syntax, whose semantics is smoothly integrated into the small-step\\nsemantics of the base language LMNtal. The proposed constructs allow combined\\nand nested use of quantifiers within individual rewrite rules.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LMNtal 是一种基于分层图重写的编程和建模语言,它使用逻辑变量来表示连接性,使用膜来表示层次结构。在理论方面,它允许基于直觉线性逻辑的逻辑解释;在实践方面,它的完整实现支持基于图的并行模型检查器,并已被用于包括各种计算模型在内的多种应用建模。本文讨论了我们如何将 LMNtal 扩展为 QLMNtal(带量词的 LMNtal),通过在重写和匹配中引入量词,进一步增强分层图重写在高层建模中的实用性。这些量词使我们能够以一种综合的方式表达通用量词、卡片性和不存在性。与其他在图重写中引入量词的尝试不同,QLMNtal 具有基于term的语法,其语义可以平滑地集成到基础语言 LMNtal 的小步语义中。所提出的构造允许在单个重写规则中组合和嵌套使用量词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing Quantification into a Hierarchical Graph Rewriting Language
LMNtal is a programming and modeling language based on hierarchical graph rewriting that uses logical variables to represent connectivity and membranes to represent hierarchy. On the theoretical side, it allows logical interpretation based on intuitionistic linear logic; on the practical side, its full-fledged implementation supports a graph-based parallel model checker and has been used to model diverse applications including various computational models. This paper discuss how we extend LMNtal to QLMNtal (LMNtal with Quantification) to further enhance the usefulness of hierarchical graph rewriting for high-level modeling by introducing quantifiers into rewriting as well as matching. Those quantifiers allows us to express universal quantification, cardinality and non-existence in an integrated manner. Unlike other attempts to introduce quantifiers into graph rewriting, QLMNtal has term-based syntax, whose semantics is smoothly integrated into the small-step semantics of the base language LMNtal. The proposed constructs allow combined and nested use of quantifiers within individual rewrite rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1