{"title":"316L 不锈钢小直径管的电抛光:降低表面粗糙度和增强耐腐蚀性","authors":"Kai Feng, Chaonan Liu, Yu Wang, Zhenwei Wang","doi":"10.1007/s11665-024-10090-9","DOIUrl":null,"url":null,"abstract":"<p>Semiconductor, pharmaceutical, and food processing industries require highly clean and corrosion-resistant 316L stainless steel pipelines to prevent product contamination and ensure durability. This study employs an optimized electropolishing technique for small-diameter 316L stainless steel tubes, aimed at significantly reducing surface roughness and enhancing corrosion resistance to meet stringent industry standards. A comprehensive examination of the effects of electropolishing parameters—polishing time, current density, and temperature—on surface roughness and morphology was conducted. Optimal conditions were determined to be 105 seconds of polishing time, a current density of 50 A·dm<sup>-2</sup>, and a temperature of 60 °C. Under these conditions, the tube achieves a mirror-like finish with a surface roughness of 0.063 μm. Corrosion resistance was characterized using electrochemical testing and x-ray photoelectron spectroscopy. The electropolished tube exhibits superior corrosion resistance compared to the mechanically polished tube, which is attributed to its increased thickness and chromium-rich passive film.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"12 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electropolishing of 316L Stainless Steel Small-Diameter Tubes: Reduced Surface Roughness and Enhanced Corrosion Resistance\",\"authors\":\"Kai Feng, Chaonan Liu, Yu Wang, Zhenwei Wang\",\"doi\":\"10.1007/s11665-024-10090-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semiconductor, pharmaceutical, and food processing industries require highly clean and corrosion-resistant 316L stainless steel pipelines to prevent product contamination and ensure durability. This study employs an optimized electropolishing technique for small-diameter 316L stainless steel tubes, aimed at significantly reducing surface roughness and enhancing corrosion resistance to meet stringent industry standards. A comprehensive examination of the effects of electropolishing parameters—polishing time, current density, and temperature—on surface roughness and morphology was conducted. Optimal conditions were determined to be 105 seconds of polishing time, a current density of 50 A·dm<sup>-2</sup>, and a temperature of 60 °C. Under these conditions, the tube achieves a mirror-like finish with a surface roughness of 0.063 μm. Corrosion resistance was characterized using electrochemical testing and x-ray photoelectron spectroscopy. The electropolished tube exhibits superior corrosion resistance compared to the mechanically polished tube, which is attributed to its increased thickness and chromium-rich passive film.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10090-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10090-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
半导体、制药和食品加工行业需要高度清洁和耐腐蚀的 316L 不锈钢管道,以防止产品污染并确保耐用性。本研究针对小直径 316L 不锈钢管采用了优化的电抛光技术,旨在显著降低表面粗糙度并增强耐腐蚀性,以满足严格的行业标准。对电解抛光参数(抛光时间、电流密度和温度)对表面粗糙度和形态的影响进行了全面研究。最佳条件被确定为 105 秒的抛光时间、50 A-dm-2 的电流密度和 60 °C 的温度。在这些条件下,管子可获得表面粗糙度为 0.063 μm 的镜面效果。使用电化学测试和 X 射线光电子能谱对耐腐蚀性进行了表征。与机械抛光管相比,电抛光管表现出更强的耐腐蚀性,这归功于其厚度增加和富铬被动膜。
Electropolishing of 316L Stainless Steel Small-Diameter Tubes: Reduced Surface Roughness and Enhanced Corrosion Resistance
Semiconductor, pharmaceutical, and food processing industries require highly clean and corrosion-resistant 316L stainless steel pipelines to prevent product contamination and ensure durability. This study employs an optimized electropolishing technique for small-diameter 316L stainless steel tubes, aimed at significantly reducing surface roughness and enhancing corrosion resistance to meet stringent industry standards. A comprehensive examination of the effects of electropolishing parameters—polishing time, current density, and temperature—on surface roughness and morphology was conducted. Optimal conditions were determined to be 105 seconds of polishing time, a current density of 50 A·dm-2, and a temperature of 60 °C. Under these conditions, the tube achieves a mirror-like finish with a surface roughness of 0.063 μm. Corrosion resistance was characterized using electrochemical testing and x-ray photoelectron spectroscopy. The electropolished tube exhibits superior corrosion resistance compared to the mechanically polished tube, which is attributed to its increased thickness and chromium-rich passive film.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered