过热处理对镍基单晶超级合金微观结构和应力断裂性能的影响

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-17 DOI:10.1007/s11665-024-10082-9
Chuntao Ge, Lirong Liu, Peisen Lv, Guangxian Lu, Jian Zhang, Yunsong Zhao
{"title":"过热处理对镍基单晶超级合金微观结构和应力断裂性能的影响","authors":"Chuntao Ge, Lirong Liu, Peisen Lv, Guangxian Lu, Jian Zhang, Yunsong Zhao","doi":"10.1007/s11665-024-10082-9","DOIUrl":null,"url":null,"abstract":"<p>The degradation of microstructure and mechanical properties caused by overheating service of nickel-based single-crystal superalloys poses a serious threat to the safe use of turbine blades. In this work, the overheating treatment was conducted for a second-generation Ni-based single-crystal superalloy in the temperature range of 1100-1260 °C for 10 min. The effects of overheating temperature on microstructure and stress rupture properties (760 °C/800 MPa and 1050 °C/190 MPa) were studied. With the increase in the overheating temperature, the primary <i>γ</i>' phase progressively evolves in shape from cuboidal to spherical and then to petal shape. Meanwhile, the rate of precipitation and growth of the secondary <i>γ</i>′ phase increases with the rising temperature. In addition, the number and depth of interfacial grooves of experimental alloy increase with decreasing cooling rate. At 760 °C/800 MPa, the stress rupture life of the alloy after overheating at 1180 °C/10 min is abnormally increased to 228 h, which is higher than that of the standard heat treatment alloy. At 1050 °C/190 MPa, the stress rupture life of the alloy descends tardily with the increase in the overheating temperature.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"66 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Overheating Treatment on Microstructure and Stress Rupture Properties of a Nickel-Based Single-Crystal Superalloy\",\"authors\":\"Chuntao Ge, Lirong Liu, Peisen Lv, Guangxian Lu, Jian Zhang, Yunsong Zhao\",\"doi\":\"10.1007/s11665-024-10082-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The degradation of microstructure and mechanical properties caused by overheating service of nickel-based single-crystal superalloys poses a serious threat to the safe use of turbine blades. In this work, the overheating treatment was conducted for a second-generation Ni-based single-crystal superalloy in the temperature range of 1100-1260 °C for 10 min. The effects of overheating temperature on microstructure and stress rupture properties (760 °C/800 MPa and 1050 °C/190 MPa) were studied. With the increase in the overheating temperature, the primary <i>γ</i>' phase progressively evolves in shape from cuboidal to spherical and then to petal shape. Meanwhile, the rate of precipitation and growth of the secondary <i>γ</i>′ phase increases with the rising temperature. In addition, the number and depth of interfacial grooves of experimental alloy increase with decreasing cooling rate. At 760 °C/800 MPa, the stress rupture life of the alloy after overheating at 1180 °C/10 min is abnormally increased to 228 h, which is higher than that of the standard heat treatment alloy. At 1050 °C/190 MPa, the stress rupture life of the alloy descends tardily with the increase in the overheating temperature.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10082-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10082-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镍基单晶超级合金在过热服役过程中引起的微观结构和机械性能退化对涡轮叶片的安全使用构成了严重威胁。本研究对第二代镍基单晶超合金进行了过热处理,温度范围为 1100-1260 ℃,时间为 10 分钟。研究了过热温度对微观结构和应力断裂性能(760 °C/800 MPa 和 1050 °C/190 MPa)的影响。随着过热温度的升高,原生γ'相的形状逐渐从立方体演变为球形,再演变为花瓣形。同时,次生γ′相的析出和生长速度也随着温度的升高而增加。此外,实验合金界面沟槽的数量和深度随冷却速率的降低而增加。在 760 °C/800 MPa 条件下,合金在 1180 °C/10 min 过热后的应力断裂寿命异常延长至 228 h,高于标准热处理合金。在 1050 °C/190 MPa 下,合金的应力断裂寿命随着过热温度的升高而缓慢下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Overheating Treatment on Microstructure and Stress Rupture Properties of a Nickel-Based Single-Crystal Superalloy

The degradation of microstructure and mechanical properties caused by overheating service of nickel-based single-crystal superalloys poses a serious threat to the safe use of turbine blades. In this work, the overheating treatment was conducted for a second-generation Ni-based single-crystal superalloy in the temperature range of 1100-1260 °C for 10 min. The effects of overheating temperature on microstructure and stress rupture properties (760 °C/800 MPa and 1050 °C/190 MPa) were studied. With the increase in the overheating temperature, the primary γ' phase progressively evolves in shape from cuboidal to spherical and then to petal shape. Meanwhile, the rate of precipitation and growth of the secondary γ′ phase increases with the rising temperature. In addition, the number and depth of interfacial grooves of experimental alloy increase with decreasing cooling rate. At 760 °C/800 MPa, the stress rupture life of the alloy after overheating at 1180 °C/10 min is abnormally increased to 228 h, which is higher than that of the standard heat treatment alloy. At 1050 °C/190 MPa, the stress rupture life of the alloy descends tardily with the increase in the overheating temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1