利用三维粒子跟踪测速技术从双摄像头混合现实视频图像中可视化粒子速度

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Visualization Pub Date : 2024-09-16 DOI:10.1007/s12650-024-01028-3
Thomas Chivers, Jeffrey S. Marshall
{"title":"利用三维粒子跟踪测速技术从双摄像头混合现实视频图像中可视化粒子速度","authors":"Thomas Chivers, Jeffrey S. Marshall","doi":"10.1007/s12650-024-01028-3","DOIUrl":null,"url":null,"abstract":"<p>Mixed reality (MR) systems integrate diverse sensors, allowing users to visualize and interact with their surroundings. Mixed reality headsets typically include synchronized front-facing cameras that, among other things, can be used to track tracer particles (such as snowflakes) to estimate particle velocity field in real time. The current work presents a 3D particle tracking velocimetry method for use with MR devices, which combines binocular disparity and various monocular cues to estimate particle distance from an observer. This distance information is then incorporated into a particle tracking velocimetry algorithm to generate a three-dimensional visualization of the particle velocities. The resulting mixed reality particle tracking velocimetry (MR-PTV) approach was initially tested using synthetic particle data obtained by discrete element method simulations, resulting in a detailed error assessment of the method. The approach was then experimentally validated for particles transported in a wind tunnel and in a water flume flow using the Microsoft HoloLens 2 MR headset to image the particle motion. The resulting MR-PTV system can be used for mixed reality particle velocity visualization in a variety of industrial, scientific, and recreational purposes.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry\",\"authors\":\"Thomas Chivers, Jeffrey S. Marshall\",\"doi\":\"10.1007/s12650-024-01028-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mixed reality (MR) systems integrate diverse sensors, allowing users to visualize and interact with their surroundings. Mixed reality headsets typically include synchronized front-facing cameras that, among other things, can be used to track tracer particles (such as snowflakes) to estimate particle velocity field in real time. The current work presents a 3D particle tracking velocimetry method for use with MR devices, which combines binocular disparity and various monocular cues to estimate particle distance from an observer. This distance information is then incorporated into a particle tracking velocimetry algorithm to generate a three-dimensional visualization of the particle velocities. The resulting mixed reality particle tracking velocimetry (MR-PTV) approach was initially tested using synthetic particle data obtained by discrete element method simulations, resulting in a detailed error assessment of the method. The approach was then experimentally validated for particles transported in a wind tunnel and in a water flume flow using the Microsoft HoloLens 2 MR headset to image the particle motion. The resulting MR-PTV system can be used for mixed reality particle velocity visualization in a variety of industrial, scientific, and recreational purposes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-024-01028-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-01028-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

混合现实(MR)系统集成了各种传感器,使用户能够直观地观察周围环境并与之互动。混合现实头显通常包括同步前置摄像头,除其他外,可用于跟踪示踪粒子(如雪花),实时估算粒子速度场。目前的工作提出了一种与混合现实设备配合使用的三维粒子跟踪测速方法,该方法结合了双目视差和各种单目线索来估计粒子与观察者的距离。然后将此距离信息纳入粒子跟踪测速算法,生成粒子速度的三维可视化图像。由此产生的混合现实粒子跟踪测速(MR-PTV)方法最初使用离散元素法模拟获得的合成粒子数据进行测试,从而对该方法进行了详细的误差评估。然后,利用微软 HoloLens 2 磁共振头显对风洞和水槽流中的颗粒运动进行成像,对该方法进行了实验验证。由此产生的 MR-PTV 系统可用于各种工业、科学和娱乐用途的混合现实粒子速度可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry

Mixed reality (MR) systems integrate diverse sensors, allowing users to visualize and interact with their surroundings. Mixed reality headsets typically include synchronized front-facing cameras that, among other things, can be used to track tracer particles (such as snowflakes) to estimate particle velocity field in real time. The current work presents a 3D particle tracking velocimetry method for use with MR devices, which combines binocular disparity and various monocular cues to estimate particle distance from an observer. This distance information is then incorporated into a particle tracking velocimetry algorithm to generate a three-dimensional visualization of the particle velocities. The resulting mixed reality particle tracking velocimetry (MR-PTV) approach was initially tested using synthetic particle data obtained by discrete element method simulations, resulting in a detailed error assessment of the method. The approach was then experimentally validated for particles transported in a wind tunnel and in a water flume flow using the Microsoft HoloLens 2 MR headset to image the particle motion. The resulting MR-PTV system can be used for mixed reality particle velocity visualization in a variety of industrial, scientific, and recreational purposes.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
期刊最新文献
Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry Numerical investigations of heat transfer enhancement in ionic liquid-piston compressor using cooling pipes Scatterplot selection for dimensionality reduction in multidimensional data visualization Robust and multiresolution sparse processing particle image velocimetry for improvement in spatial resolution A user study of visualisations of spatio-temporal eye tracking data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1