用直碳纳米管和螺旋碳纳米管增强环氧纳米复合材料抗压行为的实验研究

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Polymer Composites Pub Date : 2024-09-18 DOI:10.1002/pc.29076
Soroush Saririan, Michael Borynski, Thomas Londono, Jose Arrango-Murillo, Kedar Kirane
{"title":"用直碳纳米管和螺旋碳纳米管增强环氧纳米复合材料抗压行为的实验研究","authors":"Soroush Saririan, Michael Borynski, Thomas Londono, Jose Arrango-Murillo, Kedar Kirane","doi":"10.1002/pc.29076","DOIUrl":null,"url":null,"abstract":"This paper is aimed at an experimental investigation of the effect of straight and helical carbon nanotubes on the compressive behavior of epoxy nanocomposites. The epoxy nanocomposites are fabricated with varying levels of SCNT and HCNT, each with two different fabrication techniques viz. high shear mixing and ultrasonication. In samples made using high shear mixing, the compressive strength is found to actually decrease, due to poor dispersion of the CNTs, resulting in voids and clumps, which can adversely affect the strength. Ultrasonic homogenization is found to better disperse the CNTs within the epoxy resin with nearly a 10-fold decrease in the heterogeneity size. Compression tests conducted on the ultrasonically homogenized CNT-epoxy nanocomposites indicate a modest increase in the compressive strength. The best increase of 5% is obtained with 1% SCNT. On the other hand, the HCNT samples show a higher post-peak residual stress suggesting an improved mode II/III fracture toughness. The high shear mixed samples exhibit a bulging deformation with no clear evidence of shear localization. On the other hand, the ultrasonic homogenization (UH) samples bulge and eventually show a clear localized shear band, likely due to a smaller heterogeneity size. Some samples with relatively poor dispersion exhibit an axial splitting failure and a comparatively low compressive strength. In addition, it is demonstrated that using acetone as a solvent during dispersion can affect the curing kinetics, which results in a nanocomposite with a rubbery consistency with low stiffness and strength, but high deformability.","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes\",\"authors\":\"Soroush Saririan, Michael Borynski, Thomas Londono, Jose Arrango-Murillo, Kedar Kirane\",\"doi\":\"10.1002/pc.29076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is aimed at an experimental investigation of the effect of straight and helical carbon nanotubes on the compressive behavior of epoxy nanocomposites. The epoxy nanocomposites are fabricated with varying levels of SCNT and HCNT, each with two different fabrication techniques viz. high shear mixing and ultrasonication. In samples made using high shear mixing, the compressive strength is found to actually decrease, due to poor dispersion of the CNTs, resulting in voids and clumps, which can adversely affect the strength. Ultrasonic homogenization is found to better disperse the CNTs within the epoxy resin with nearly a 10-fold decrease in the heterogeneity size. Compression tests conducted on the ultrasonically homogenized CNT-epoxy nanocomposites indicate a modest increase in the compressive strength. The best increase of 5% is obtained with 1% SCNT. On the other hand, the HCNT samples show a higher post-peak residual stress suggesting an improved mode II/III fracture toughness. The high shear mixed samples exhibit a bulging deformation with no clear evidence of shear localization. On the other hand, the ultrasonic homogenization (UH) samples bulge and eventually show a clear localized shear band, likely due to a smaller heterogeneity size. Some samples with relatively poor dispersion exhibit an axial splitting failure and a comparatively low compressive strength. In addition, it is demonstrated that using acetone as a solvent during dispersion can affect the curing kinetics, which results in a nanocomposite with a rubbery consistency with low stiffness and strength, but high deformability.\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29076\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过实验研究直碳纳米管和螺旋碳纳米管对环氧纳米复合材料压缩行为的影响。环氧纳米复合材料由不同含量的 SCNT 和 HCNT 制成,并分别采用两种不同的制造技术,即高剪切混合和超声波处理。在使用高剪切混合法制作的样品中,由于碳纳米管的分散性较差,会产生空隙和团块,从而对强度产生不利影响,因此抗压强度实际上有所下降。超声波均质化能更好地分散环氧树脂中的碳纳米管,使异质性尺寸减少近 10 倍。对超声匀化 CNT 环氧纳米复合材料进行的压缩测试表明,压缩强度略有增加。其中,1% SCNT 的抗压强度提高了 5%。另一方面,HCNT 样品显示出更高的峰值后残余应力,表明模式 II/III 断裂韧性得到改善。高剪切混合样品表现出隆起变形,没有明显的剪切定位迹象。另一方面,超声均质(UH)样品则出现隆起,并最终显示出明显的局部剪切带,这可能是由于异质性尺寸较小。一些分散性相对较差的样品会出现轴向劈裂失效,抗压强度相对较低。此外,研究还表明,在分散过程中使用丙酮作为溶剂会影响固化动力学,从而导致纳米复合材料呈橡胶稠度,刚度和强度较低,但变形能力较强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes
This paper is aimed at an experimental investigation of the effect of straight and helical carbon nanotubes on the compressive behavior of epoxy nanocomposites. The epoxy nanocomposites are fabricated with varying levels of SCNT and HCNT, each with two different fabrication techniques viz. high shear mixing and ultrasonication. In samples made using high shear mixing, the compressive strength is found to actually decrease, due to poor dispersion of the CNTs, resulting in voids and clumps, which can adversely affect the strength. Ultrasonic homogenization is found to better disperse the CNTs within the epoxy resin with nearly a 10-fold decrease in the heterogeneity size. Compression tests conducted on the ultrasonically homogenized CNT-epoxy nanocomposites indicate a modest increase in the compressive strength. The best increase of 5% is obtained with 1% SCNT. On the other hand, the HCNT samples show a higher post-peak residual stress suggesting an improved mode II/III fracture toughness. The high shear mixed samples exhibit a bulging deformation with no clear evidence of shear localization. On the other hand, the ultrasonic homogenization (UH) samples bulge and eventually show a clear localized shear band, likely due to a smaller heterogeneity size. Some samples with relatively poor dispersion exhibit an axial splitting failure and a comparatively low compressive strength. In addition, it is demonstrated that using acetone as a solvent during dispersion can affect the curing kinetics, which results in a nanocomposite with a rubbery consistency with low stiffness and strength, but high deformability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
期刊最新文献
Magnetic elastomer composites with tunable magnetization behaviors for flexible magnetic transducers Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes The effect of silane-modified carbon black and nano-silica, individually and in combination, on the performance of ethylene–propylene–diene monomer rubber Enhancement of mechanical and structural characteristics through the hybridization of carbon fiber with Cordia-dichotoma/polyester composite Impact of graphite on tribo-mechanical, structural, and thermal behaviors of polyoxymethylene copolymer/glass fiber hybrid composites via Taguchi optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1