Hongli Jia, Yingdan Zhu, Chun Yan, Gang Chen, Dong Liu
{"title":"多层厚不对称层压板工艺诱导变形的堆叠顺序优化策略","authors":"Hongli Jia, Yingdan Zhu, Chun Yan, Gang Chen, Dong Liu","doi":"10.1002/pc.29048","DOIUrl":null,"url":null,"abstract":"The occurrence of process-induced deformations of composites laminates is challenging for assembly accuracy and may lead to a service life reduction of parts. However, it can be obviously mitigated through different optimization strategies on the basis of the accurate curing process simulation. In this study, a stacking sequence optimization strategy is proposed and applied to multi-layer thick asymmetric laminates. The shapes of deformed laminate plates are experimentally investigated in virtue of the three-dimensional coordinate measuring machine. The thermo-chemical–mechanical behaviors of plates are first verified through the comparisons of model predicted and experimental process-induced deformations. Then the nonlinear control formula achieved through the regression model is proposed for the direct relationship between stacking sequences and process-induced deformations. Finally, the required solutions are generated by solving the control formula. With the comparisons between the average deformations before and after optimizations, it is found that the magnitudes of deformations are significantly reduced, especially when the unoptimizated deformations are large.","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stacking sequence optimization strategy for process-induced deformation of multi-layer thick asymmetric laminates\",\"authors\":\"Hongli Jia, Yingdan Zhu, Chun Yan, Gang Chen, Dong Liu\",\"doi\":\"10.1002/pc.29048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of process-induced deformations of composites laminates is challenging for assembly accuracy and may lead to a service life reduction of parts. However, it can be obviously mitigated through different optimization strategies on the basis of the accurate curing process simulation. In this study, a stacking sequence optimization strategy is proposed and applied to multi-layer thick asymmetric laminates. The shapes of deformed laminate plates are experimentally investigated in virtue of the three-dimensional coordinate measuring machine. The thermo-chemical–mechanical behaviors of plates are first verified through the comparisons of model predicted and experimental process-induced deformations. Then the nonlinear control formula achieved through the regression model is proposed for the direct relationship between stacking sequences and process-induced deformations. Finally, the required solutions are generated by solving the control formula. With the comparisons between the average deformations before and after optimizations, it is found that the magnitudes of deformations are significantly reduced, especially when the unoptimizated deformations are large.\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29048\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A stacking sequence optimization strategy for process-induced deformation of multi-layer thick asymmetric laminates
The occurrence of process-induced deformations of composites laminates is challenging for assembly accuracy and may lead to a service life reduction of parts. However, it can be obviously mitigated through different optimization strategies on the basis of the accurate curing process simulation. In this study, a stacking sequence optimization strategy is proposed and applied to multi-layer thick asymmetric laminates. The shapes of deformed laminate plates are experimentally investigated in virtue of the three-dimensional coordinate measuring machine. The thermo-chemical–mechanical behaviors of plates are first verified through the comparisons of model predicted and experimental process-induced deformations. Then the nonlinear control formula achieved through the regression model is proposed for the direct relationship between stacking sequences and process-induced deformations. Finally, the required solutions are generated by solving the control formula. With the comparisons between the average deformations before and after optimizations, it is found that the magnitudes of deformations are significantly reduced, especially when the unoptimizated deformations are large.
期刊介绍:
Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.