{"title":"了解未固化热固性预浸料的压实行为:实验研究和理论分析","authors":"Lei Yan, Bowen Gong, Shuyi Wang, Baofa Cheng, Cheng Sun, Wenting Ouyang, Huan Wang, Hua‐Xin Peng","doi":"10.1002/pc.28995","DOIUrl":null,"url":null,"abstract":"<jats:label/>The deformation behavior of uncured thermoset prepreg during hot compaction process was investigated by dividing the whole compaction process into an initial compression stage and the subsequent creep stage. At the compression stage, there existed a strain‐softening phenomenon in the temperature range of 50–90°C, indicating different deformation behavior that is mainly determined by the viscosity of prepreg. Following an appraisal of advantages and limitations of existing compaction models, a combination model consisted of a modified power‐law model including the influence of temperature and the generalized Kelvin‐Voigt model was proposed to describe the deformation behavior of prepreg during compression and creep stage, respectively. Finally, a discussion on the compaction mechanism was conducted to offer some insights into the deformation process.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Strain‐softening phenomenon occurred during the compaction of uncured prepreg.</jats:list-item> <jats:list-item>Proposed combination model captures the deformation of uncured prepreg well.</jats:list-item> <jats:list-item>The percolation mechanism dominates prepreg deformation during compaction.</jats:list-item> <jats:list-item>The squeeze flow mechanism causes limited thickness reduction of prepreg.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the compaction behavior of uncured thermoset prepreg: Experimental investigation and theoretical analyses\",\"authors\":\"Lei Yan, Bowen Gong, Shuyi Wang, Baofa Cheng, Cheng Sun, Wenting Ouyang, Huan Wang, Hua‐Xin Peng\",\"doi\":\"10.1002/pc.28995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>The deformation behavior of uncured thermoset prepreg during hot compaction process was investigated by dividing the whole compaction process into an initial compression stage and the subsequent creep stage. At the compression stage, there existed a strain‐softening phenomenon in the temperature range of 50–90°C, indicating different deformation behavior that is mainly determined by the viscosity of prepreg. Following an appraisal of advantages and limitations of existing compaction models, a combination model consisted of a modified power‐law model including the influence of temperature and the generalized Kelvin‐Voigt model was proposed to describe the deformation behavior of prepreg during compression and creep stage, respectively. Finally, a discussion on the compaction mechanism was conducted to offer some insights into the deformation process.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Strain‐softening phenomenon occurred during the compaction of uncured prepreg.</jats:list-item> <jats:list-item>Proposed combination model captures the deformation of uncured prepreg well.</jats:list-item> <jats:list-item>The percolation mechanism dominates prepreg deformation during compaction.</jats:list-item> <jats:list-item>The squeeze flow mechanism causes limited thickness reduction of prepreg.</jats:list-item> </jats:list>\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.28995\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.28995","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Understanding the compaction behavior of uncured thermoset prepreg: Experimental investigation and theoretical analyses
The deformation behavior of uncured thermoset prepreg during hot compaction process was investigated by dividing the whole compaction process into an initial compression stage and the subsequent creep stage. At the compression stage, there existed a strain‐softening phenomenon in the temperature range of 50–90°C, indicating different deformation behavior that is mainly determined by the viscosity of prepreg. Following an appraisal of advantages and limitations of existing compaction models, a combination model consisted of a modified power‐law model including the influence of temperature and the generalized Kelvin‐Voigt model was proposed to describe the deformation behavior of prepreg during compression and creep stage, respectively. Finally, a discussion on the compaction mechanism was conducted to offer some insights into the deformation process.HighlightsStrain‐softening phenomenon occurred during the compaction of uncured prepreg.Proposed combination model captures the deformation of uncured prepreg well.The percolation mechanism dominates prepreg deformation during compaction.The squeeze flow mechanism causes limited thickness reduction of prepreg.
期刊介绍:
Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.