N. Kavitha, J. Manoj Dhivakar, N. P. G. Bhavani, Ramanujam Sarathi, Stefan Kornhuber
{"title":"了解不同纳米填料对电晕老化硅橡胶纳米复合材料的电性能、热性能和表面性能的影响","authors":"N. Kavitha, J. Manoj Dhivakar, N. P. G. Bhavani, Ramanujam Sarathi, Stefan Kornhuber","doi":"10.1002/pc.29065","DOIUrl":null,"url":null,"abstract":"<jats:label/>In the present work, the impact of corona aging on the dielectric, thermal, and surface properties of silicone rubber filled with different nanofillers such as alumina (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), aluminum trihydrate (ATH), boron nitride (BN), and titania (TiO<jats:sub>2</jats:sub>) are studied. The surface degradation of the silicone rubber nanocomposites after corona aging is evaluated through contact angle measurement, atomic force microscopy (AFM) studies, and by water droplet‐initiated corona inception voltage studies. Alumina filled silicone rubber shows less reduction in surface and hydrophobic properties after corona aging. Water droplet initiated corona inception voltage (CIV) under negative DC voltage is much higher than under positive DC and AC voltages. Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/TiO<jats:sub>2</jats:sub>‐ filled silicone rubber samples show better CIV performance. The Dielectric Response Spectroscopy (DRS) indicates that TiO<jats:sub>2</jats:sub> filled silicone rubber insulating material possesses higher permittivity at lower frequencies. Boron nitride added composites have high thermal conductivity whereas ATH filled silicone rubber composites shows higher decay rate, as observed through laser‐induced thermography studies. A significantly high surface leakage current is observed in all samples after corona aging. The Space Charge Limited Current (SCLC) studies clearly indicate that inclusion of nano‐fillers resulted in an increase in crossover voltage and trap density values compared to base silicone rubber.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> filled silicone rubber exhibits lower surface roughness even after corona aging.</jats:list-item> <jats:list-item>High thermal conductive composites show better performance even after corona aging.</jats:list-item> <jats:list-item>ATH, and BN filled silicone rubber have improved thermal conductivity by 35.2% and 76.3%.</jats:list-item> <jats:list-item>TiO<jats:sub>2</jats:sub> filler added silicone rubber exhibits high permittivity with low tan δ.</jats:list-item> <jats:list-item>Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> filled silicone rubber has minimal surface and volume leakage current</jats:list-item> <jats:list-item>Crossover voltage and the trap density get enhanced on addition of fillers to the base polymer.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"66 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the impact of different nanofillers on electrical, thermal, and surface properties of corona‐aged silicone rubber nanocomposites\",\"authors\":\"N. Kavitha, J. Manoj Dhivakar, N. P. G. Bhavani, Ramanujam Sarathi, Stefan Kornhuber\",\"doi\":\"10.1002/pc.29065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>In the present work, the impact of corona aging on the dielectric, thermal, and surface properties of silicone rubber filled with different nanofillers such as alumina (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), aluminum trihydrate (ATH), boron nitride (BN), and titania (TiO<jats:sub>2</jats:sub>) are studied. The surface degradation of the silicone rubber nanocomposites after corona aging is evaluated through contact angle measurement, atomic force microscopy (AFM) studies, and by water droplet‐initiated corona inception voltage studies. Alumina filled silicone rubber shows less reduction in surface and hydrophobic properties after corona aging. Water droplet initiated corona inception voltage (CIV) under negative DC voltage is much higher than under positive DC and AC voltages. Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/TiO<jats:sub>2</jats:sub>‐ filled silicone rubber samples show better CIV performance. The Dielectric Response Spectroscopy (DRS) indicates that TiO<jats:sub>2</jats:sub> filled silicone rubber insulating material possesses higher permittivity at lower frequencies. Boron nitride added composites have high thermal conductivity whereas ATH filled silicone rubber composites shows higher decay rate, as observed through laser‐induced thermography studies. A significantly high surface leakage current is observed in all samples after corona aging. The Space Charge Limited Current (SCLC) studies clearly indicate that inclusion of nano‐fillers resulted in an increase in crossover voltage and trap density values compared to base silicone rubber.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> filled silicone rubber exhibits lower surface roughness even after corona aging.</jats:list-item> <jats:list-item>High thermal conductive composites show better performance even after corona aging.</jats:list-item> <jats:list-item>ATH, and BN filled silicone rubber have improved thermal conductivity by 35.2% and 76.3%.</jats:list-item> <jats:list-item>TiO<jats:sub>2</jats:sub> filler added silicone rubber exhibits high permittivity with low tan δ.</jats:list-item> <jats:list-item>Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> filled silicone rubber has minimal surface and volume leakage current</jats:list-item> <jats:list-item>Crossover voltage and the trap density get enhanced on addition of fillers to the base polymer.</jats:list-item> </jats:list>\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29065\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29065","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Understanding the impact of different nanofillers on electrical, thermal, and surface properties of corona‐aged silicone rubber nanocomposites
In the present work, the impact of corona aging on the dielectric, thermal, and surface properties of silicone rubber filled with different nanofillers such as alumina (Al2O3), aluminum trihydrate (ATH), boron nitride (BN), and titania (TiO2) are studied. The surface degradation of the silicone rubber nanocomposites after corona aging is evaluated through contact angle measurement, atomic force microscopy (AFM) studies, and by water droplet‐initiated corona inception voltage studies. Alumina filled silicone rubber shows less reduction in surface and hydrophobic properties after corona aging. Water droplet initiated corona inception voltage (CIV) under negative DC voltage is much higher than under positive DC and AC voltages. Al2O3/TiO2‐ filled silicone rubber samples show better CIV performance. The Dielectric Response Spectroscopy (DRS) indicates that TiO2 filled silicone rubber insulating material possesses higher permittivity at lower frequencies. Boron nitride added composites have high thermal conductivity whereas ATH filled silicone rubber composites shows higher decay rate, as observed through laser‐induced thermography studies. A significantly high surface leakage current is observed in all samples after corona aging. The Space Charge Limited Current (SCLC) studies clearly indicate that inclusion of nano‐fillers resulted in an increase in crossover voltage and trap density values compared to base silicone rubber.HighlightsAl2O3 filled silicone rubber exhibits lower surface roughness even after corona aging.High thermal conductive composites show better performance even after corona aging.ATH, and BN filled silicone rubber have improved thermal conductivity by 35.2% and 76.3%.TiO2 filler added silicone rubber exhibits high permittivity with low tan δ.Al2O3 filled silicone rubber has minimal surface and volume leakage currentCrossover voltage and the trap density get enhanced on addition of fillers to the base polymer.
期刊介绍:
Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.