掺杂 M(M = Co、Cu、Fe、Zr)对 CeO2 基催化剂在低温下进行氨选择性催化氧化的影响

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2024-09-16 DOI:10.1007/s10562-024-04820-w
Longwei Cheng, Pan Wang, Quanxin Ye, Hongyu Zhao, Sheikh Muhammad Farhan, Tong Yan, Hailin Zhao
{"title":"掺杂 M(M = Co、Cu、Fe、Zr)对 CeO2 基催化剂在低温下进行氨选择性催化氧化的影响","authors":"Longwei Cheng,&nbsp;Pan Wang,&nbsp;Quanxin Ye,&nbsp;Hongyu Zhao,&nbsp;Sheikh Muhammad Farhan,&nbsp;Tong Yan,&nbsp;Hailin Zhao","doi":"10.1007/s10562-024-04820-w","DOIUrl":null,"url":null,"abstract":"<div><p>Selective catalytic conversion of ammonia to nitrogen is an effective method for reducing ammonia emissions from both stationary and mobile sources. In this study, CeO<sub>2</sub>-based catalysts (M/CeO<sub>2</sub>, M = Co, Cu, Fe, Zr) were synthesized using the sol–gel method and subsequently tested on a simulated gas experimental platform to assess their performance in NH<sub>3</sub> selective catalytic oxidation (NH<sub>3</sub>-SCO). Results showed that Co/CeO<sub>2</sub> and Cu/CeO<sub>2</sub> catalysts exhibited high ammonia oxidation activity at respectively low temperatures, with T<sub>50</sub> 196.8 and 229.5 °C, and T<sub>90</sub> 239.2 and 292.1 °C. However, it was observed that while Co/CeO<sub>2</sub> displayed poor N<sub>2</sub> selectivity, Cu/CeO<sub>2</sub> demonstrated good N<sub>2</sub> selectivity. The superior catalytic performance of Cu/CeO<sub>2</sub> and Co/CeO<sub>2</sub> catalysts compared to Fe/CeO<sub>2</sub> and Zr/CeO<sub>2</sub> can be attributed to their distinct interactions with Ce. Subsequent characterization experiments were conducted to elucidate these interactions. BET and SEM analyses revealed that all M/CeO<sub>2</sub> catalysts possessed a typical mesoporous structure. XRD and XPS results indicated that the primary phase of each catalyst was CeO<sub>2</sub>, and the incorporation of M transition metals did not alter the cubic fluorite structure. The interaction between the M metal and Ce varied, impacting the Ce<sup>3+</sup> content on the catalyst surface, which in turn influenced oxygen species adsorption and ammonia oxidation activity. H<sub>2</sub>-TPR and Raman spectroscopy analyses demonstrated that M metal incorporation shifted the CeO<sub>2</sub> reduction peak, thereby altering reduction properties and affecting oxidation performance. In particular, the Co-metal composite shifted the reduction peak to a lower temperature, thereby enhancing the reduction properties and indirectly increasing oxidation activity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of M (M = Co, Cu, Fe, Zr) Doping on CeO2-Based Catalysts for Ammonia Selective Catalytic Oxidation at Low Temperatures\",\"authors\":\"Longwei Cheng,&nbsp;Pan Wang,&nbsp;Quanxin Ye,&nbsp;Hongyu Zhao,&nbsp;Sheikh Muhammad Farhan,&nbsp;Tong Yan,&nbsp;Hailin Zhao\",\"doi\":\"10.1007/s10562-024-04820-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selective catalytic conversion of ammonia to nitrogen is an effective method for reducing ammonia emissions from both stationary and mobile sources. In this study, CeO<sub>2</sub>-based catalysts (M/CeO<sub>2</sub>, M = Co, Cu, Fe, Zr) were synthesized using the sol–gel method and subsequently tested on a simulated gas experimental platform to assess their performance in NH<sub>3</sub> selective catalytic oxidation (NH<sub>3</sub>-SCO). Results showed that Co/CeO<sub>2</sub> and Cu/CeO<sub>2</sub> catalysts exhibited high ammonia oxidation activity at respectively low temperatures, with T<sub>50</sub> 196.8 and 229.5 °C, and T<sub>90</sub> 239.2 and 292.1 °C. However, it was observed that while Co/CeO<sub>2</sub> displayed poor N<sub>2</sub> selectivity, Cu/CeO<sub>2</sub> demonstrated good N<sub>2</sub> selectivity. The superior catalytic performance of Cu/CeO<sub>2</sub> and Co/CeO<sub>2</sub> catalysts compared to Fe/CeO<sub>2</sub> and Zr/CeO<sub>2</sub> can be attributed to their distinct interactions with Ce. Subsequent characterization experiments were conducted to elucidate these interactions. BET and SEM analyses revealed that all M/CeO<sub>2</sub> catalysts possessed a typical mesoporous structure. XRD and XPS results indicated that the primary phase of each catalyst was CeO<sub>2</sub>, and the incorporation of M transition metals did not alter the cubic fluorite structure. The interaction between the M metal and Ce varied, impacting the Ce<sup>3+</sup> content on the catalyst surface, which in turn influenced oxygen species adsorption and ammonia oxidation activity. H<sub>2</sub>-TPR and Raman spectroscopy analyses demonstrated that M metal incorporation shifted the CeO<sub>2</sub> reduction peak, thereby altering reduction properties and affecting oxidation performance. In particular, the Co-metal composite shifted the reduction peak to a lower temperature, thereby enhancing the reduction properties and indirectly increasing oxidation activity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04820-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04820-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

选择性催化氨气转化为氮气是减少固定源和移动源氨气排放的有效方法。本研究采用溶胶-凝胶法合成了基于 CeO2 的催化剂(M/CeO2,M = Co、Cu、Fe、Zr),随后在模拟气体实验平台上对其进行了测试,以评估其在 NH3 选择性催化氧化(NH3-SCO)中的性能。结果表明,Co/CeO2 和 Cu/CeO2 催化剂在低温下分别表现出较高的氨氧化活性,T50 分别为 196.8 ℃ 和 229.5 ℃,T90 分别为 239.2 ℃ 和 292.1 ℃。然而,据观察,Co/CeO2 对 N2 的选择性较差,而 Cu/CeO2 对 N2 的选择性较好。与 Fe/CeO2 和 Zr/CeO2 相比,Cu/CeO2 和 Co/CeO2 催化剂具有更优越的催化性能,这归因于它们与 Ce 之间不同的相互作用。随后进行了表征实验,以阐明这些相互作用。BET 和 SEM 分析表明,所有 M/CeO2 催化剂都具有典型的介孔结构。XRD 和 XPS 结果表明,每种催化剂的主相都是 CeO2,而 M 过渡金属的加入并没有改变立方萤石结构。M 金属与 Ce 之间的相互作用发生了变化,影响了催化剂表面的 Ce3+ 含量,进而影响了氧物种吸附和氨氧化活性。H2-TPR 和拉曼光谱分析表明,M 金属的加入移动了 CeO2 的还原峰,从而改变了还原特性并影响了氧化性能。尤其是钴金属复合材料将还原峰转移到了更低的温度,从而增强了还原特性,间接提高了氧化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of M (M = Co, Cu, Fe, Zr) Doping on CeO2-Based Catalysts for Ammonia Selective Catalytic Oxidation at Low Temperatures

Selective catalytic conversion of ammonia to nitrogen is an effective method for reducing ammonia emissions from both stationary and mobile sources. In this study, CeO2-based catalysts (M/CeO2, M = Co, Cu, Fe, Zr) were synthesized using the sol–gel method and subsequently tested on a simulated gas experimental platform to assess their performance in NH3 selective catalytic oxidation (NH3-SCO). Results showed that Co/CeO2 and Cu/CeO2 catalysts exhibited high ammonia oxidation activity at respectively low temperatures, with T50 196.8 and 229.5 °C, and T90 239.2 and 292.1 °C. However, it was observed that while Co/CeO2 displayed poor N2 selectivity, Cu/CeO2 demonstrated good N2 selectivity. The superior catalytic performance of Cu/CeO2 and Co/CeO2 catalysts compared to Fe/CeO2 and Zr/CeO2 can be attributed to their distinct interactions with Ce. Subsequent characterization experiments were conducted to elucidate these interactions. BET and SEM analyses revealed that all M/CeO2 catalysts possessed a typical mesoporous structure. XRD and XPS results indicated that the primary phase of each catalyst was CeO2, and the incorporation of M transition metals did not alter the cubic fluorite structure. The interaction between the M metal and Ce varied, impacting the Ce3+ content on the catalyst surface, which in turn influenced oxygen species adsorption and ammonia oxidation activity. H2-TPR and Raman spectroscopy analyses demonstrated that M metal incorporation shifted the CeO2 reduction peak, thereby altering reduction properties and affecting oxidation performance. In particular, the Co-metal composite shifted the reduction peak to a lower temperature, thereby enhancing the reduction properties and indirectly increasing oxidation activity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Plasma-Synthesized Combined Nitrogen and Cationic Species Doped-MnO2: Impact on Texture, Optical Properties, and Photocatalytic Activity Microscopic Investigation of CO Oxidation Reaction by Copper–Manganese Oxide Catalysts Sonochemical Synthesis of Ti1−x−yFexPbyO2 (with x and y = 0, 0.01, 0.03, 0.07): Structural Analysis, Influence of Radiation Type on Photocatalytic Activity and Assessment of Antimicrobial Properties Study on Effect of Calcination and Ag Loading on Ag/TiO2 Catalyst for Low-Temperature Selective Catalytic Oxidation of Ammonia Novel of Poly(triazine imide) Composite for Selective Photooxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1