{"title":"TRPV2:细胞生理学中的通用调节器,其热敏感性尚不明确","authors":"Tabea C. Fricke, Andreas Leffler","doi":"10.1186/s12576-024-00936-1","DOIUrl":null,"url":null,"abstract":"Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.","PeriodicalId":22836,"journal":{"name":"The Journal of Physiological Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity\",\"authors\":\"Tabea C. Fricke, Andreas Leffler\",\"doi\":\"10.1186/s12576-024-00936-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.\",\"PeriodicalId\":22836,\"journal\":{\"name\":\"The Journal of Physiological Sciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physiological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-024-00936-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physiological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12576-024-00936-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity
Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.