统一的漏斗恢复 SQP 算法

David Kiessling, Sven Leyffer, Charlie Vanaret
{"title":"统一的漏斗恢复 SQP 算法","authors":"David Kiessling, Sven Leyffer, Charlie Vanaret","doi":"arxiv-2409.09208","DOIUrl":null,"url":null,"abstract":"We consider nonlinearly constrained optimization problems and discuss a\ngeneric double-loop framework consisting of four algorithmic ingredients that\nunifies a broad range of nonlinear optimization solvers. This framework has\nbeen implemented in the open-source solver Uno, a Swiss Army knife-like C++\noptimization framework that unifies many nonlinearly constrained nonconvex\noptimization solvers. We illustrate the framework with a sequential quadratic\nprogramming (SQP) algorithm that maintains an acceptable upper bound on the\nconstraint violation, called a funnel, that is monotonically decreased to\ncontrol the feasibility of the iterates. Infeasible quadratic subproblems are\nhandled by a feasibility restoration strategy. Globalization is controlled by a\nline search or a trust-region method. We prove global convergence of the\ntrust-region funnel SQP method, building on known results from filter methods.\nWe implement the algorithm in Uno, and we provide extensive test results for\nthe trust-region line-search funnel SQP on small CUTEst instances.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Funnel Restoration SQP Algorithm\",\"authors\":\"David Kiessling, Sven Leyffer, Charlie Vanaret\",\"doi\":\"arxiv-2409.09208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider nonlinearly constrained optimization problems and discuss a\\ngeneric double-loop framework consisting of four algorithmic ingredients that\\nunifies a broad range of nonlinear optimization solvers. This framework has\\nbeen implemented in the open-source solver Uno, a Swiss Army knife-like C++\\noptimization framework that unifies many nonlinearly constrained nonconvex\\noptimization solvers. We illustrate the framework with a sequential quadratic\\nprogramming (SQP) algorithm that maintains an acceptable upper bound on the\\nconstraint violation, called a funnel, that is monotonically decreased to\\ncontrol the feasibility of the iterates. Infeasible quadratic subproblems are\\nhandled by a feasibility restoration strategy. Globalization is controlled by a\\nline search or a trust-region method. We prove global convergence of the\\ntrust-region funnel SQP method, building on known results from filter methods.\\nWe implement the algorithm in Uno, and we provide extensive test results for\\nthe trust-region line-search funnel SQP on small CUTEst instances.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了非线性约束优化问题,并讨论了由四种算法成分组成的通用双环框架,该框架统一了广泛的非线性优化求解器。该框架已在开源求解器 Uno 中实现,Uno 是一个类似瑞士军刀的 C++ 优化框架,它统一了许多非线性约束非凸优化求解器。我们用一种顺序二次编程(SQP)算法来说明该框架,该算法对违反约束的情况保持一个可接受的上限,称为漏斗,该漏斗单调递减,以控制迭代的可行性。不可行的二次子问题由可行性恢复策略处理。全局化由直线搜索或信任区域方法控制。我们以滤波方法的已知结果为基础,证明了信任区域漏斗 SQP 方法的全局收敛性。我们在 Uno 中实现了该算法,并在小型 CUTEst 实例上提供了信任区域线性搜索漏斗 SQP 的大量测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified Funnel Restoration SQP Algorithm
We consider nonlinearly constrained optimization problems and discuss a generic double-loop framework consisting of four algorithmic ingredients that unifies a broad range of nonlinear optimization solvers. This framework has been implemented in the open-source solver Uno, a Swiss Army knife-like C++ optimization framework that unifies many nonlinearly constrained nonconvex optimization solvers. We illustrate the framework with a sequential quadratic programming (SQP) algorithm that maintains an acceptable upper bound on the constraint violation, called a funnel, that is monotonically decreased to control the feasibility of the iterates. Infeasible quadratic subproblems are handled by a feasibility restoration strategy. Globalization is controlled by a line search or a trust-region method. We prove global convergence of the trust-region funnel SQP method, building on known results from filter methods. We implement the algorithm in Uno, and we provide extensive test results for the trust-region line-search funnel SQP on small CUTEst instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1