4-羟基壬烯醛通过调控癌症干细胞命运促进结直肠癌进展

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-09-12 DOI:10.1089/ars.2023.0530
Xu Huang,Lin Huang,Chunhua Ma,Mingyang Hong,Lili Xu,Yuanyuan Ju,Haibo Li,Yilang Wang,Xingmin Wang
{"title":"4-羟基壬烯醛通过调控癌症干细胞命运促进结直肠癌进展","authors":"Xu Huang,Lin Huang,Chunhua Ma,Mingyang Hong,Lili Xu,Yuanyuan Ju,Haibo Li,Yilang Wang,Xingmin Wang","doi":"10.1089/ars.2023.0530","DOIUrl":null,"url":null,"abstract":"AIMS\r\nTumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression.\r\n\r\nMETHODS\r\nHuman CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time PCR, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. Tumor-promoting role of 4-HNE was confirmed using a xenograft model.\r\n\r\nRESULTS\r\nExposure of CRC cells to 4-HNE activated non-canonical Hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. Additionally, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo.\r\n\r\nINNOVATION AND CONCLUSION\r\nThese findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the non-canonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy.","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":"8 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Hydroxynonenal Promotes Colorectal Cancer Progression through Regulating Cancer Stem Cell Fate.\",\"authors\":\"Xu Huang,Lin Huang,Chunhua Ma,Mingyang Hong,Lili Xu,Yuanyuan Ju,Haibo Li,Yilang Wang,Xingmin Wang\",\"doi\":\"10.1089/ars.2023.0530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIMS\\r\\nTumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression.\\r\\n\\r\\nMETHODS\\r\\nHuman CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time PCR, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. Tumor-promoting role of 4-HNE was confirmed using a xenograft model.\\r\\n\\r\\nRESULTS\\r\\nExposure of CRC cells to 4-HNE activated non-canonical Hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. Additionally, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo.\\r\\n\\r\\nINNOVATION AND CONCLUSION\\r\\nThese findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the non-canonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy.\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0530\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0530","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:肿瘤微环境(TME)在维持癌症干细胞(CSCs)方面起着至关重要的作用。4-羟基壬烯醛(4-HNE)大量存在于结直肠癌(CRC)的肿瘤微环境中。然而,4-HNE 对 CSCs 和癌症进展的贡献仍不清楚。本研究旨在探讨4-HNE对CSC命运调控和肿瘤进展的影响。方法将人类CRC细胞暴露于4-HNE,并采用定量实时PCR、免疫荧光染色、荧光激活细胞分拣和生物信息学分析等方法分析CSC信号转导。结果将 CRC 细胞暴露于 4-HNE 会激活 LGR5+ CSCs 中的非经典刺猬(HH)信号和同源重组修复(HRR)通路。此外,阻断HH信号导致γH2AX的表达显著增加,表明4-HNE诱导双链DNA断裂(DSB),同时激活HH信号,通过HRR途径保护癌细胞免受4-HNE诱导的损伤。此外,4-HNE处理增加了LGR5+ CSCs的数量,并促进了这些细胞的不对称分裂,从而增强了自我更新和分化能力。这些研究结果表明,4-HNE 作为 TME 中的信号诱导剂,可激活非经典 HH 通路以保护 CSC 免受氧化损伤,增强 LGR5+ CSC 的增殖和非对称分裂,从而促进肿瘤生长。这些新见解揭示了氧化TME内CSC命运的调控,为理解和靶向治疗CRC的CSCs提供了潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4-Hydroxynonenal Promotes Colorectal Cancer Progression through Regulating Cancer Stem Cell Fate.
AIMS Tumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression. METHODS Human CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time PCR, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. Tumor-promoting role of 4-HNE was confirmed using a xenograft model. RESULTS Exposure of CRC cells to 4-HNE activated non-canonical Hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. Additionally, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo. INNOVATION AND CONCLUSION These findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the non-canonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1