{"title":"基于连续可变纠缠光场的量子身份验证协议","authors":"Zhipeng Chen, Fengwei Yao and Xiao-Qi Xiao","doi":"10.1088/1612-202x/ad771d","DOIUrl":null,"url":null,"abstract":"Identity authentication is an important method to ensure the security of information, even for quantum information. A bi-directional quantum identity authentication protocol using a two-mode squeezed state as an entanglement resource is proposed. The decoy states’ sequences are used to enhance the security of the mutual communication process between the legitimate users. The security of the protocol under a Gaussian-cloner attack is investigated in detail with the secret information rate as the major parameters. The results show that the proposed scheme is physically secure and is able to detect possible eavesdroppers.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"16 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantum identity authentication protocol based on continuous-variable entangled light fields\",\"authors\":\"Zhipeng Chen, Fengwei Yao and Xiao-Qi Xiao\",\"doi\":\"10.1088/1612-202x/ad771d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity authentication is an important method to ensure the security of information, even for quantum information. A bi-directional quantum identity authentication protocol using a two-mode squeezed state as an entanglement resource is proposed. The decoy states’ sequences are used to enhance the security of the mutual communication process between the legitimate users. The security of the protocol under a Gaussian-cloner attack is investigated in detail with the secret information rate as the major parameters. The results show that the proposed scheme is physically secure and is able to detect possible eavesdroppers.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad771d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad771d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
A quantum identity authentication protocol based on continuous-variable entangled light fields
Identity authentication is an important method to ensure the security of information, even for quantum information. A bi-directional quantum identity authentication protocol using a two-mode squeezed state as an entanglement resource is proposed. The decoy states’ sequences are used to enhance the security of the mutual communication process between the legitimate users. The security of the protocol under a Gaussian-cloner attack is investigated in detail with the secret information rate as the major parameters. The results show that the proposed scheme is physically secure and is able to detect possible eavesdroppers.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics