Yu Ying Lu, Xinyang Li, Herbert Une Meir, Guang Yu Yang, Yu Shuan Fan, Way Lee Cheng, Wai Siong Chai
{"title":"利用均方根误差选择氨氢混合物层流燃烧速度化学机制的数值分析","authors":"Yu Ying Lu, Xinyang Li, Herbert Une Meir, Guang Yu Yang, Yu Shuan Fan, Way Lee Cheng, Wai Siong Chai","doi":"10.1002/ceat.202400053","DOIUrl":null,"url":null,"abstract":"This study employs Cantera code to investigate the laminar burning velocity of different ammonia–hydrogen mixtures. Suitable models were selected from recent literature, and the one with the lowest root mean square error (RMSE) against experimental data was identified through the error function method. Bao mechanism shows an RMSE value of 4.71 at atmospheric pressure for ammonia–hydrogen mixtures, while the Otomo mechanism exhibits an RMSE of 2.11 under high-pressure conditions. Additionally, sensitivity analysis was conducted to highlight critical reactions within each mechanism, emphasizing distinctions between different pressures. This approach aims to choose the proper mechanism to reduce computational and experimental costs in the early stages of ammonia–hydrogen research.","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis Selecting Chemical Mechanism of Ammonia–Hydrogen Mixture Laminar Burning Velocity by RMSE\",\"authors\":\"Yu Ying Lu, Xinyang Li, Herbert Une Meir, Guang Yu Yang, Yu Shuan Fan, Way Lee Cheng, Wai Siong Chai\",\"doi\":\"10.1002/ceat.202400053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employs Cantera code to investigate the laminar burning velocity of different ammonia–hydrogen mixtures. Suitable models were selected from recent literature, and the one with the lowest root mean square error (RMSE) against experimental data was identified through the error function method. Bao mechanism shows an RMSE value of 4.71 at atmospheric pressure for ammonia–hydrogen mixtures, while the Otomo mechanism exhibits an RMSE of 2.11 under high-pressure conditions. Additionally, sensitivity analysis was conducted to highlight critical reactions within each mechanism, emphasizing distinctions between different pressures. This approach aims to choose the proper mechanism to reduce computational and experimental costs in the early stages of ammonia–hydrogen research.\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/ceat.202400053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/ceat.202400053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical Analysis Selecting Chemical Mechanism of Ammonia–Hydrogen Mixture Laminar Burning Velocity by RMSE
This study employs Cantera code to investigate the laminar burning velocity of different ammonia–hydrogen mixtures. Suitable models were selected from recent literature, and the one with the lowest root mean square error (RMSE) against experimental data was identified through the error function method. Bao mechanism shows an RMSE value of 4.71 at atmospheric pressure for ammonia–hydrogen mixtures, while the Otomo mechanism exhibits an RMSE of 2.11 under high-pressure conditions. Additionally, sensitivity analysis was conducted to highlight critical reactions within each mechanism, emphasizing distinctions between different pressures. This approach aims to choose the proper mechanism to reduce computational and experimental costs in the early stages of ammonia–hydrogen research.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.