基于气泡流动识别的新型气泡图像模型

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-09-14 DOI:10.1002/ceat.202400009
Prof. Guohui Li, Dr. Xue Liu, Prof. Yang Liu
{"title":"基于气泡流动识别的新型气泡图像模型","authors":"Prof. Guohui Li,&nbsp;Dr. Xue Liu,&nbsp;Prof. Yang Liu","doi":"10.1002/ceat.202400009","DOIUrl":null,"url":null,"abstract":"<p>In this study, a new ellipse-fitting algorithm is proposed to achieve the reconstruction of bubble shapes in bubbly flow captured by a high-speed camera in the gas–liquid two-phase column reactor. Bubble flow patterns and geometric parameters in the experimental images are recognized and identified successfully, represented by means of the topological parameters. Three logical steps are carried out in detail. First, the area threshold and the circularity factors are established to identify the bubbles whether belonging to a single bubble or not. The overlapping bubbles in images can be separated from single bubbles based on a watershed segmentation algorithm. Second, a single bubble image and an overlapping bubble image are combined into one image. After that, statistical analysis for the size distributions and ellipse area bubbles is performed for further analysis and discussion. The advantage of this algorithm is that it can make use of a set of major and minor axes of an ellipse to capture the ellipse parameters more effectively. Simulation results are well agreed with experimental measurements. Moreover, it can be used to detect many ellipse-like bubbles that are dispersed in high-speed camera images, indicating that it is a better strategy for the recognition and identification of bubbly turbulent flow accurately.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Bubble Image Model Based on the Recognition of Bubble Flow\",\"authors\":\"Prof. Guohui Li,&nbsp;Dr. Xue Liu,&nbsp;Prof. Yang Liu\",\"doi\":\"10.1002/ceat.202400009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a new ellipse-fitting algorithm is proposed to achieve the reconstruction of bubble shapes in bubbly flow captured by a high-speed camera in the gas–liquid two-phase column reactor. Bubble flow patterns and geometric parameters in the experimental images are recognized and identified successfully, represented by means of the topological parameters. Three logical steps are carried out in detail. First, the area threshold and the circularity factors are established to identify the bubbles whether belonging to a single bubble or not. The overlapping bubbles in images can be separated from single bubbles based on a watershed segmentation algorithm. Second, a single bubble image and an overlapping bubble image are combined into one image. After that, statistical analysis for the size distributions and ellipse area bubbles is performed for further analysis and discussion. The advantage of this algorithm is that it can make use of a set of major and minor axes of an ellipse to capture the ellipse parameters more effectively. Simulation results are well agreed with experimental measurements. Moreover, it can be used to detect many ellipse-like bubbles that are dispersed in high-speed camera images, indicating that it is a better strategy for the recognition and identification of bubbly turbulent flow accurately.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的椭圆拟合算法,用于实现气液两相柱反应器中高速摄像机捕获的气泡流中气泡形状的重建。实验图像中的气泡流动形态和几何参数通过拓扑参数的方式被成功识别和鉴定。具体分为三个逻辑步骤。首先,建立面积阈值和圆度系数,以识别气泡是否属于单个气泡。基于分水岭分割算法,可将图像中重叠的气泡从单个气泡中分离出来。其次,将单一气泡图像和重叠气泡图像合并为一张图像。然后,对气泡的大小分布和椭圆面积进行统计分析,以便进一步分析和讨论。该算法的优点是可以利用椭圆的一组主轴和次轴来更有效地捕捉椭圆参数。仿真结果与实验测量结果十分吻合。此外,它还能用于检测高速相机图像中分散的许多椭圆形气泡,这表明它是准确识别和鉴定气泡湍流的一种较好策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Bubble Image Model Based on the Recognition of Bubble Flow

In this study, a new ellipse-fitting algorithm is proposed to achieve the reconstruction of bubble shapes in bubbly flow captured by a high-speed camera in the gas–liquid two-phase column reactor. Bubble flow patterns and geometric parameters in the experimental images are recognized and identified successfully, represented by means of the topological parameters. Three logical steps are carried out in detail. First, the area threshold and the circularity factors are established to identify the bubbles whether belonging to a single bubble or not. The overlapping bubbles in images can be separated from single bubbles based on a watershed segmentation algorithm. Second, a single bubble image and an overlapping bubble image are combined into one image. After that, statistical analysis for the size distributions and ellipse area bubbles is performed for further analysis and discussion. The advantage of this algorithm is that it can make use of a set of major and minor axes of an ellipse to capture the ellipse parameters more effectively. Simulation results are well agreed with experimental measurements. Moreover, it can be used to detect many ellipse-like bubbles that are dispersed in high-speed camera images, indicating that it is a better strategy for the recognition and identification of bubbly turbulent flow accurately.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1