{"title":"泌尿系统共生菌嗜酸乳杆菌对草酸钙结石形成的直接抑制作用","authors":"Chadanat Noonin, Anantaya Putpim, Visith Thongboonkerd","doi":"10.1186/s40168-024-01877-y","DOIUrl":null,"url":null,"abstract":"Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 − 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability. ","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"31 1","pages":""},"PeriodicalIF":13.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The direct inhibitory effects of Lactobacillus acidophilus, a commensal urinary bacterium, on calcium oxalate stone development\",\"authors\":\"Chadanat Noonin, Anantaya Putpim, Visith Thongboonkerd\",\"doi\":\"10.1186/s40168-024-01877-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 − 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability. \",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01877-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01877-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
嗜酸乳杆菌是一种泌尿系统共生细菌,在健康人体内的含量比结石病人高。因此,有人认为嗜酸乳杆菌对肾结石病(KSD)有抑制作用,但其机制尚不清楚。因此,与已知会促进草酸钙结石形成的大肠杆菌相比,我们研究了嗜酸乳杆菌对草酸钙(CaOx)结石形成的直接影响。1 × 103 CFU/ml 的嗜酸乳杆菌能显著减少新形成晶体的数量、种子晶体的增大和聚集以及晶体在肾细胞膜上的粘附。相比之下,1 × 103 CFU/ml 的大肠杆菌能明显促进晶体生长和聚集,但不影响结晶和晶体-细胞粘附。草酸盐消耗试验表明,嗜酸乳杆菌和大肠杆菌在培养 1 - 3 小时后都不会明显降低剩余草酸盐的水平。但是,它们都粘附在 CaOx 晶体上。表面成分检测显示,只有嗜酸乳杆菌表达 S 层蛋白,而只有大肠杆菌表面有鞭毛。去除嗜酸乳杆菌的 S 层蛋白和大肠杆菌的鞭毛可分别完全消除嗜酸乳杆菌和大肠杆菌的抑制和促进作用。嗜酸乳杆菌通过阻碍 CaOx 的结晶、生长、聚集和细胞粘附能力来抑制 CaOx 结石的形成。相比之下,大肠杆菌则通过促进氧化钙的生长和聚集来增强氧化钙结石的形成。它们之间的矛盾效应很可能来自不同的表面成分(即嗜酸乳杆菌的 S 层蛋白和大肠杆菌的鞭毛),而不是来自草酸盐降解能力。
The direct inhibitory effects of Lactobacillus acidophilus, a commensal urinary bacterium, on calcium oxalate stone development
Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 − 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.