Magali R. Nicolau, Sofía D. Reposi, Marisa G. Bonasora, Gabriela E. Zarlavsky, Beatriz G. Galati, Marina M. Gotelli
{"title":"Hydrocleys nymphoides、Alisma plantago-aquatica 和 Sagittaria montevidensis(天南星科)花粉和绦叶发育的超微结构研究","authors":"Magali R. Nicolau, Sofía D. Reposi, Marisa G. Bonasora, Gabriela E. Zarlavsky, Beatriz G. Galati, Marina M. Gotelli","doi":"10.1007/s00709-024-01989-0","DOIUrl":null,"url":null,"abstract":"<p>The Alismataceae family, widely distributed across tropical temperate swamps and wetlands, includes 15 genera post-merger with Limnocharitaceae. In Argentina, six genera are represented across three clades. Embryological characters, notably the male gametophyte and anther, are crucial in taxonomy due to their stability against environmental changes. This study aims to analyze the ultrastructure of the tapetum and pollen grain development in three economically and ecologically important species representing each clade: <i>Sagittaria montevidensis</i> (Clade A), <i>Hydrocleys nymphoides</i> (Clade B), and <i>Alisma plantago-aquatica</i> (Clade C). Anthers at different developmental stages were processed according to classic techniques for their observation with bright-field and transmission electron microscopy. The three studied species within the Alismataceae family exhibit similar reproductive characteristics. Seven stages of pollen grain development were identified. The microsporogenesis is successive with a regular meiosis. The ultrastructure of the tapetal cells shows similarities to other species with plasmodial tapetum. During the microspore tetrad stage, there is tapetal hyperactivity and an increase in secretion processes. In the free microspore stage, the tapetal cells lose their walls and increase the amount of rough endoplasmic reticulum forming a network of cisternae that extend into evaginations. Later cells completely invade the anther locule and fuse to form a tapetal plasmodium. No peritapetal membrane with orbicules was observed. Pollen is released at the tricellular stage. The pollen grain wall presents an ectexine with a basal layer, columellae, and tectum with supratectal spines while an endexine is not observed in any of the three species. This research enhances the understanding of tapetal cell interactions with developing pollen grains and contributes to the knowledge of the ultrastructure of plasmodial tapetum. Moreover, these findings highlight evolutionary reproductive patterns in Alismataceae, suggesting the plasmodial tapetum as a synapomorphy for the order.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":"100 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastructural study of pollen and tapetum development in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae)\",\"authors\":\"Magali R. Nicolau, Sofía D. Reposi, Marisa G. Bonasora, Gabriela E. Zarlavsky, Beatriz G. Galati, Marina M. Gotelli\",\"doi\":\"10.1007/s00709-024-01989-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Alismataceae family, widely distributed across tropical temperate swamps and wetlands, includes 15 genera post-merger with Limnocharitaceae. In Argentina, six genera are represented across three clades. Embryological characters, notably the male gametophyte and anther, are crucial in taxonomy due to their stability against environmental changes. This study aims to analyze the ultrastructure of the tapetum and pollen grain development in three economically and ecologically important species representing each clade: <i>Sagittaria montevidensis</i> (Clade A), <i>Hydrocleys nymphoides</i> (Clade B), and <i>Alisma plantago-aquatica</i> (Clade C). Anthers at different developmental stages were processed according to classic techniques for their observation with bright-field and transmission electron microscopy. The three studied species within the Alismataceae family exhibit similar reproductive characteristics. Seven stages of pollen grain development were identified. The microsporogenesis is successive with a regular meiosis. The ultrastructure of the tapetal cells shows similarities to other species with plasmodial tapetum. During the microspore tetrad stage, there is tapetal hyperactivity and an increase in secretion processes. In the free microspore stage, the tapetal cells lose their walls and increase the amount of rough endoplasmic reticulum forming a network of cisternae that extend into evaginations. Later cells completely invade the anther locule and fuse to form a tapetal plasmodium. No peritapetal membrane with orbicules was observed. Pollen is released at the tricellular stage. The pollen grain wall presents an ectexine with a basal layer, columellae, and tectum with supratectal spines while an endexine is not observed in any of the three species. This research enhances the understanding of tapetal cell interactions with developing pollen grains and contributes to the knowledge of the ultrastructure of plasmodial tapetum. Moreover, these findings highlight evolutionary reproductive patterns in Alismataceae, suggesting the plasmodial tapetum as a synapomorphy for the order.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01989-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01989-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ultrastructural study of pollen and tapetum development in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae)
The Alismataceae family, widely distributed across tropical temperate swamps and wetlands, includes 15 genera post-merger with Limnocharitaceae. In Argentina, six genera are represented across three clades. Embryological characters, notably the male gametophyte and anther, are crucial in taxonomy due to their stability against environmental changes. This study aims to analyze the ultrastructure of the tapetum and pollen grain development in three economically and ecologically important species representing each clade: Sagittaria montevidensis (Clade A), Hydrocleys nymphoides (Clade B), and Alisma plantago-aquatica (Clade C). Anthers at different developmental stages were processed according to classic techniques for their observation with bright-field and transmission electron microscopy. The three studied species within the Alismataceae family exhibit similar reproductive characteristics. Seven stages of pollen grain development were identified. The microsporogenesis is successive with a regular meiosis. The ultrastructure of the tapetal cells shows similarities to other species with plasmodial tapetum. During the microspore tetrad stage, there is tapetal hyperactivity and an increase in secretion processes. In the free microspore stage, the tapetal cells lose their walls and increase the amount of rough endoplasmic reticulum forming a network of cisternae that extend into evaginations. Later cells completely invade the anther locule and fuse to form a tapetal plasmodium. No peritapetal membrane with orbicules was observed. Pollen is released at the tricellular stage. The pollen grain wall presents an ectexine with a basal layer, columellae, and tectum with supratectal spines while an endexine is not observed in any of the three species. This research enhances the understanding of tapetal cell interactions with developing pollen grains and contributes to the knowledge of the ultrastructure of plasmodial tapetum. Moreover, these findings highlight evolutionary reproductive patterns in Alismataceae, suggesting the plasmodial tapetum as a synapomorphy for the order.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".