{"title":"打破对称的流向均质表面引起的净跨向流动","authors":"Oleksandr Zhdanov, Angela Busse","doi":"10.1017/jfm.2024.634","DOIUrl":null,"url":null,"abstract":"The influence of symmetry-breaking effects of ridge-type roughness on secondary currents in turbulent channel flow is investigated using direct numerical simulations. The ridges have triangular cross-section, which is systematically varied from isosceles to right-angled triangle, introducing an imbalance to the slopes of the ridges’ lateral surfaces while the streamwise homogeneity of the surfaces is maintained. In all cases, secondary current vortices are produced, but asymmetric ridge cross-sections break the symmetry of these vortices. As a result of the asymmetry-induced misalignment and imbalance in the secondary current vortices, net spanwise flow emerges. The magnitude of the spanwise flow increases with the slope ratio of the ridge lateral surfaces and significantly modifies the mean flow topology, leading to the merging of critical points in the case of the right-angled triangular ridge shape. Within the cavities, the net spanwise flow is accompanied by a non-zero mean spanwise pressure gradient, while from the perspective of the outer flow, the scalene ridge surfaces have a similar effect as a wall that is slowly moving in the spanwise direction. Overall, the present results suggest the existence of a special type of Prandtl's secondary currents of the second kind, namely those that result in net spanwise flow.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Net spanwise flow induced by symmetry-breaking streamwise homogeneous surfaces\",\"authors\":\"Oleksandr Zhdanov, Angela Busse\",\"doi\":\"10.1017/jfm.2024.634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of symmetry-breaking effects of ridge-type roughness on secondary currents in turbulent channel flow is investigated using direct numerical simulations. The ridges have triangular cross-section, which is systematically varied from isosceles to right-angled triangle, introducing an imbalance to the slopes of the ridges’ lateral surfaces while the streamwise homogeneity of the surfaces is maintained. In all cases, secondary current vortices are produced, but asymmetric ridge cross-sections break the symmetry of these vortices. As a result of the asymmetry-induced misalignment and imbalance in the secondary current vortices, net spanwise flow emerges. The magnitude of the spanwise flow increases with the slope ratio of the ridge lateral surfaces and significantly modifies the mean flow topology, leading to the merging of critical points in the case of the right-angled triangular ridge shape. Within the cavities, the net spanwise flow is accompanied by a non-zero mean spanwise pressure gradient, while from the perspective of the outer flow, the scalene ridge surfaces have a similar effect as a wall that is slowly moving in the spanwise direction. Overall, the present results suggest the existence of a special type of Prandtl's secondary currents of the second kind, namely those that result in net spanwise flow.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.634\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.634","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Net spanwise flow induced by symmetry-breaking streamwise homogeneous surfaces
The influence of symmetry-breaking effects of ridge-type roughness on secondary currents in turbulent channel flow is investigated using direct numerical simulations. The ridges have triangular cross-section, which is systematically varied from isosceles to right-angled triangle, introducing an imbalance to the slopes of the ridges’ lateral surfaces while the streamwise homogeneity of the surfaces is maintained. In all cases, secondary current vortices are produced, but asymmetric ridge cross-sections break the symmetry of these vortices. As a result of the asymmetry-induced misalignment and imbalance in the secondary current vortices, net spanwise flow emerges. The magnitude of the spanwise flow increases with the slope ratio of the ridge lateral surfaces and significantly modifies the mean flow topology, leading to the merging of critical points in the case of the right-angled triangular ridge shape. Within the cavities, the net spanwise flow is accompanied by a non-zero mean spanwise pressure gradient, while from the perspective of the outer flow, the scalene ridge surfaces have a similar effect as a wall that is slowly moving in the spanwise direction. Overall, the present results suggest the existence of a special type of Prandtl's secondary currents of the second kind, namely those that result in net spanwise flow.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.