Hossein Javid, Hamed Amiri, Seyedeh Fatemeh Hashemi, Amirali Reihani, Ali Mehri, Seyed Isaac Hashemy
{"title":"多功能氧化锌纳米颗粒:研究抗真菌、细胞毒性和氧化特性","authors":"Hossein Javid, Hamed Amiri, Seyedeh Fatemeh Hashemi, Amirali Reihani, Ali Mehri, Seyed Isaac Hashemy","doi":"10.1007/s10971-024-06531-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this research endeavor, ZnO nanoparticles were synthesized employing a sol–gel process, using a zinc nitrate salt, followed by calcination at 600 °C, to yield a final product in the form of a white powder. Characterization of the synthesized ZnO nanoparticles was accomplished using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) pattern analysis, ultraviolet–visible (UV–Vis) spectrophotometry, and transmission electron microscopy (TEM). Furthermore, the in vitro cytotoxicity of the nanoparticles against the SW480 colorectal cancer cell line was investigated using the Resazurin cell viability assay. Oxidative activity assessment involved reactive oxygen species measurement, as well as superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) tests. Additionally, the antifungal effects against <i>Candida albicans</i> and <i>Aspergillus flavus</i> were evaluated, and minimum inhibitory concentration values at 50% and 90% inhibition were determined.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"524 - 532"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional zinc oxide nanoparticles: investigating antifungal, cytotoxic, and oxidative properties\",\"authors\":\"Hossein Javid, Hamed Amiri, Seyedeh Fatemeh Hashemi, Amirali Reihani, Ali Mehri, Seyed Isaac Hashemy\",\"doi\":\"10.1007/s10971-024-06531-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research endeavor, ZnO nanoparticles were synthesized employing a sol–gel process, using a zinc nitrate salt, followed by calcination at 600 °C, to yield a final product in the form of a white powder. Characterization of the synthesized ZnO nanoparticles was accomplished using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) pattern analysis, ultraviolet–visible (UV–Vis) spectrophotometry, and transmission electron microscopy (TEM). Furthermore, the in vitro cytotoxicity of the nanoparticles against the SW480 colorectal cancer cell line was investigated using the Resazurin cell viability assay. Oxidative activity assessment involved reactive oxygen species measurement, as well as superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) tests. Additionally, the antifungal effects against <i>Candida albicans</i> and <i>Aspergillus flavus</i> were evaluated, and minimum inhibitory concentration values at 50% and 90% inhibition were determined.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"524 - 532\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06531-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06531-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究工作中,采用溶胶-凝胶工艺,使用硝酸锌盐合成了氧化锌纳米粒子,然后在 600 °C 下进行煅烧,最终得到了白色粉末状的产品。利用傅立叶变换红外光谱(FT-IR)、X 射线衍射(XRD)图谱分析、紫外-可见(UV-Vis)分光光度法和透射电子显微镜(TEM)对合成的氧化锌纳米粒子进行了表征。此外,还使用雷沙嘌呤细胞活力测定法研究了纳米颗粒对 SW480 大肠癌细胞株的体外细胞毒性。氧化活性评估包括活性氧测定以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和总抗氧化能力(TAC)测试。此外,还对白色念珠菌和黄曲霉的抗真菌效果进行了评估,并确定了 50%和 90% 抑制率下的最低抑制浓度值。
Multifunctional zinc oxide nanoparticles: investigating antifungal, cytotoxic, and oxidative properties
In this research endeavor, ZnO nanoparticles were synthesized employing a sol–gel process, using a zinc nitrate salt, followed by calcination at 600 °C, to yield a final product in the form of a white powder. Characterization of the synthesized ZnO nanoparticles was accomplished using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) pattern analysis, ultraviolet–visible (UV–Vis) spectrophotometry, and transmission electron microscopy (TEM). Furthermore, the in vitro cytotoxicity of the nanoparticles against the SW480 colorectal cancer cell line was investigated using the Resazurin cell viability assay. Oxidative activity assessment involved reactive oxygen species measurement, as well as superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) tests. Additionally, the antifungal effects against Candida albicans and Aspergillus flavus were evaluated, and minimum inhibitory concentration values at 50% and 90% inhibition were determined.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.