从深度机器学习看地球内核条件下铁的熔化温度

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscience frontiers Pub Date : 2024-09-12 DOI:10.1016/j.gsf.2024.101925
Fulun Wu , Shunqing Wu , Cai-Zhuang Wang , Kai-Ming Ho , Renata M. Wentzcovitch , Yang Sun
{"title":"从深度机器学习看地球内核条件下铁的熔化温度","authors":"Fulun Wu ,&nbsp;Shunqing Wu ,&nbsp;Cai-Zhuang Wang ,&nbsp;Kai-Ming Ho ,&nbsp;Renata M. Wentzcovitch ,&nbsp;Yang Sun","doi":"10.1016/j.gsf.2024.101925","DOIUrl":null,"url":null,"abstract":"<div><p>Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic integration and direct solid–liquid coexistence simulations, the DP predicts melting temperatures for iron at the inner core boundary, consistent with previous <em>ab initio</em> results. This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and <em>ab initio</em> calculation and suggests the crucial contribution of electronic entropy. Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 6","pages":"Article 101925"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167498712400149X/pdfft?md5=f339d8310fb9c376123ddf74211961fa&pid=1-s2.0-S167498712400149X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Melting temperature of iron under the Earth’s inner core condition from deep machine learning\",\"authors\":\"Fulun Wu ,&nbsp;Shunqing Wu ,&nbsp;Cai-Zhuang Wang ,&nbsp;Kai-Ming Ho ,&nbsp;Renata M. Wentzcovitch ,&nbsp;Yang Sun\",\"doi\":\"10.1016/j.gsf.2024.101925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic integration and direct solid–liquid coexistence simulations, the DP predicts melting temperatures for iron at the inner core boundary, consistent with previous <em>ab initio</em> results. This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and <em>ab initio</em> calculation and suggests the crucial contribution of electronic entropy. Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"15 6\",\"pages\":\"Article 101925\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S167498712400149X/pdfft?md5=f339d8310fb9c376123ddf74211961fa&pid=1-s2.0-S167498712400149X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S167498712400149X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167498712400149X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

确定地球内核条件下铁的熔化温度对于理解地核动力学和行星演化至关重要。在这里,我们为铁建立了一个深电位(DP)模型,该模型明确纳入了在地核条件下支配热力学的电子熵贡献。广泛的基准测试证明了 DP 在相关铁相和极端压力与温度条件下的高保真性。通过热力学整合和直接的固液共存模拟,DP 预测了铁在内核边界的熔化温度,与之前的 ab initio 结果一致。这解决了之前 DP 模型和 ab initio 计算在内核边界铁熔化温度上的差异,并表明电子熵的关键作用。我们的工作为铁在内核条件下的机器学习熔化行为提供了见解,并为今后开发铁和内核中其他元素的二元或三元 DP 模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melting temperature of iron under the Earth’s inner core condition from deep machine learning

Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic integration and direct solid–liquid coexistence simulations, the DP predicts melting temperatures for iron at the inner core boundary, consistent with previous ab initio results. This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio calculation and suggests the crucial contribution of electronic entropy. Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
期刊最新文献
Change in the direction of Early Cretaceous tectonic extension in eastern North China Craton as the result of Paleo-Pacific/Eurasian plate interaction Consistent crystal orientation of core and rim pyrites indicates an epitaxial growth of rim in Carlin-type gold deposits Inter-basin groundwater flow in the Ordos Basin: Evidence of environmental isotope and hydrological investigations Magmatic initial and saturated water thresholds determine copper endowments: Insights from apatite F-Cl-OH compositions Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1