{"title":"一种用于高效吸附水溶液中三硝基甲苯的耐高温苯并咪唑基多孔聚合物","authors":"Chunyan Yang, Shijie Mo, Xirui Chen, Qianqian Yuan, Jiali Zhu, Ting Wang, Min Zheng, Mingru Zhou, Guanjun Chang, Yewei Xu","doi":"10.1002/app.56259","DOIUrl":null,"url":null,"abstract":"A novel benzimidazole-based porous polymer, denoted as PTBI, was synthesized utilizing self-synthesized 1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBI) and 4,4′-difluorobenzophenone as primary materials via a C<span></span>N coupling reaction, followed by a freeze-drying process. PTBI displayed commendable thermal stability, as evidenced by a temperature of 475°C at which a 5% weight loss occurred and a char yield of up to 65% at 800°C. Trinitrotoluene (TNT) was effectively adsorbed by PTBI in aqueous solutions, thanks to the combined effects of three π–π interactions and one dipole–π interaction. At 25°C, PTBI achieved a maximum adsorption capacity as high as 280.8 mg/g, with approximately 60% of this capacity attained within just 1 h. Furthermore, a thermodynamic analysis showed that the adsorption of TNT by PTBI was a spontaneous, exothermic process that was followed by a decrease in entropy. It is noteworthy that following five adsorption and desorption cycles, the adsorption efficiency held steady at a relatively high level using acetone as the eluent. These promising results underscore PTBI's significant potential in the realm of TNT wastewater treatment, positioning it as a compelling candidate for further research and application under extreme condition in this field.","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution\",\"authors\":\"Chunyan Yang, Shijie Mo, Xirui Chen, Qianqian Yuan, Jiali Zhu, Ting Wang, Min Zheng, Mingru Zhou, Guanjun Chang, Yewei Xu\",\"doi\":\"10.1002/app.56259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel benzimidazole-based porous polymer, denoted as PTBI, was synthesized utilizing self-synthesized 1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBI) and 4,4′-difluorobenzophenone as primary materials via a C<span></span>N coupling reaction, followed by a freeze-drying process. PTBI displayed commendable thermal stability, as evidenced by a temperature of 475°C at which a 5% weight loss occurred and a char yield of up to 65% at 800°C. Trinitrotoluene (TNT) was effectively adsorbed by PTBI in aqueous solutions, thanks to the combined effects of three π–π interactions and one dipole–π interaction. At 25°C, PTBI achieved a maximum adsorption capacity as high as 280.8 mg/g, with approximately 60% of this capacity attained within just 1 h. Furthermore, a thermodynamic analysis showed that the adsorption of TNT by PTBI was a spontaneous, exothermic process that was followed by a decrease in entropy. It is noteworthy that following five adsorption and desorption cycles, the adsorption efficiency held steady at a relatively high level using acetone as the eluent. These promising results underscore PTBI's significant potential in the realm of TNT wastewater treatment, positioning it as a compelling candidate for further research and application under extreme condition in this field.\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/app.56259\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/app.56259","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution
A novel benzimidazole-based porous polymer, denoted as PTBI, was synthesized utilizing self-synthesized 1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBI) and 4,4′-difluorobenzophenone as primary materials via a CN coupling reaction, followed by a freeze-drying process. PTBI displayed commendable thermal stability, as evidenced by a temperature of 475°C at which a 5% weight loss occurred and a char yield of up to 65% at 800°C. Trinitrotoluene (TNT) was effectively adsorbed by PTBI in aqueous solutions, thanks to the combined effects of three π–π interactions and one dipole–π interaction. At 25°C, PTBI achieved a maximum adsorption capacity as high as 280.8 mg/g, with approximately 60% of this capacity attained within just 1 h. Furthermore, a thermodynamic analysis showed that the adsorption of TNT by PTBI was a spontaneous, exothermic process that was followed by a decrease in entropy. It is noteworthy that following five adsorption and desorption cycles, the adsorption efficiency held steady at a relatively high level using acetone as the eluent. These promising results underscore PTBI's significant potential in the realm of TNT wastewater treatment, positioning it as a compelling candidate for further research and application under extreme condition in this field.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.