Ahmad Sayyadi-Shahraki, Till Frömling, Fangping Zhuo
{"title":"通过位错工程调整 BaTiO3 晶体中的电荷传输","authors":"Ahmad Sayyadi-Shahraki, Till Frömling, Fangping Zhuo","doi":"10.1111/jace.20147","DOIUrl":null,"url":null,"abstract":"Dislocations in oxide ceramics significantly influence their physical properties by creating substantial local strain fields, new electronic states, and space-charge layers. In this study, we investigated the effects of mechanically introduced dislocations on the electrical conductivity of BaTiO<sub>3</sub> single crystals. High-temperature plastic deformation was employed to introduce a high dislocation density with a {100}〈100〉 slip system. Impedance measurements revealed a significant anisotropy in the conductivity due to the presence of oriented dislocation structures. The crystals with dislocation lines aligned parallel to the measurement axis ([001] crystallographic direction) exhibited 16-fold higher conductivity compared to those measured across the dislocations. Compared to the pristine crystals, this means an increase in conductivity when the measurements were carried out parallel to dislocation lines and a decrease in perpendicular measurements. Our study demonstrates that not only ferroelectric properties but also charge transport can be modified by dislocation introduction in BaTiO<sub>3</sub>.","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"17 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring charge transport in BaTiO3 crystals through dislocation engineering\",\"authors\":\"Ahmad Sayyadi-Shahraki, Till Frömling, Fangping Zhuo\",\"doi\":\"10.1111/jace.20147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dislocations in oxide ceramics significantly influence their physical properties by creating substantial local strain fields, new electronic states, and space-charge layers. In this study, we investigated the effects of mechanically introduced dislocations on the electrical conductivity of BaTiO<sub>3</sub> single crystals. High-temperature plastic deformation was employed to introduce a high dislocation density with a {100}〈100〉 slip system. Impedance measurements revealed a significant anisotropy in the conductivity due to the presence of oriented dislocation structures. The crystals with dislocation lines aligned parallel to the measurement axis ([001] crystallographic direction) exhibited 16-fold higher conductivity compared to those measured across the dislocations. Compared to the pristine crystals, this means an increase in conductivity when the measurements were carried out parallel to dislocation lines and a decrease in perpendicular measurements. Our study demonstrates that not only ferroelectric properties but also charge transport can be modified by dislocation introduction in BaTiO<sub>3</sub>.\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/jace.20147\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/jace.20147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Tailoring charge transport in BaTiO3 crystals through dislocation engineering
Dislocations in oxide ceramics significantly influence their physical properties by creating substantial local strain fields, new electronic states, and space-charge layers. In this study, we investigated the effects of mechanically introduced dislocations on the electrical conductivity of BaTiO3 single crystals. High-temperature plastic deformation was employed to introduce a high dislocation density with a {100}〈100〉 slip system. Impedance measurements revealed a significant anisotropy in the conductivity due to the presence of oriented dislocation structures. The crystals with dislocation lines aligned parallel to the measurement axis ([001] crystallographic direction) exhibited 16-fold higher conductivity compared to those measured across the dislocations. Compared to the pristine crystals, this means an increase in conductivity when the measurements were carried out parallel to dislocation lines and a decrease in perpendicular measurements. Our study demonstrates that not only ferroelectric properties but also charge transport can be modified by dislocation introduction in BaTiO3.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.