{"title":"硅酸钇改性碳化硅/碳化硅复合材料在空气和水氧环境中的氧化行为","authors":"Fang He, Yejie Cao, Yongsheng Liu, Jingxin Li, Jing Wang, Binghui Zhang, Ning Dong","doi":"10.1111/jace.20141","DOIUrl":null,"url":null,"abstract":"<p>SiC<sub>f</sub>/SiC composites have emerged as one of the most promising materials for aero-engine hot-end structures. However, their performance is limited by their susceptibility to oxidation and corrosion reactions with oxygen and water vapor. To overcome this challenge, antioxidant-modified phases are introduced into matrices of SiC<sub>f</sub>/SiC composites which improve their water and oxygen resistance. In this study, the resistance of SiC<sub>f</sub>/SiC composites modified by yttrium silicate matrix (SiC<sub>f</sub>/SiC-YS composites) to air at 1000–1400°C and water-oxygen environments at 1200°C was investigated. The diffusion paths of oxygen in SiC<sub>f</sub>/SiC-YS composites and the antioxidant behavior of the yttrium silicate matrix were discussed. Additionally, the differences in oxygen and water-oxygen corrosion resistance of SiC<sub>f</sub>/SiC-YS composites at the same temperature were compared. The strength retention of SiC<sub>f/</sub>SiC-YS composites after oxidation and water-oxygen corrosion at 1200°C were 138.6% and 108.8%, respectively. This indicates that the addition of water vapor accelerated the degradation of SiC<sub>f</sub>/SiC-YS composites. By comparing with SiC<sub>f</sub>/SiC composites, it can be concluded that the modification of the yttrium silicate matrix considerably improved the oxidation resistance of SiC<sub>f</sub>/SiC composites.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation behaviors of yttrium silicate modified SiCf/SiC composites in air and water-oxygen environments\",\"authors\":\"Fang He, Yejie Cao, Yongsheng Liu, Jingxin Li, Jing Wang, Binghui Zhang, Ning Dong\",\"doi\":\"10.1111/jace.20141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>SiC<sub>f</sub>/SiC composites have emerged as one of the most promising materials for aero-engine hot-end structures. However, their performance is limited by their susceptibility to oxidation and corrosion reactions with oxygen and water vapor. To overcome this challenge, antioxidant-modified phases are introduced into matrices of SiC<sub>f</sub>/SiC composites which improve their water and oxygen resistance. In this study, the resistance of SiC<sub>f</sub>/SiC composites modified by yttrium silicate matrix (SiC<sub>f</sub>/SiC-YS composites) to air at 1000–1400°C and water-oxygen environments at 1200°C was investigated. The diffusion paths of oxygen in SiC<sub>f</sub>/SiC-YS composites and the antioxidant behavior of the yttrium silicate matrix were discussed. Additionally, the differences in oxygen and water-oxygen corrosion resistance of SiC<sub>f</sub>/SiC-YS composites at the same temperature were compared. The strength retention of SiC<sub>f/</sub>SiC-YS composites after oxidation and water-oxygen corrosion at 1200°C were 138.6% and 108.8%, respectively. This indicates that the addition of water vapor accelerated the degradation of SiC<sub>f</sub>/SiC-YS composites. By comparing with SiC<sub>f</sub>/SiC composites, it can be concluded that the modification of the yttrium silicate matrix considerably improved the oxidation resistance of SiC<sub>f</sub>/SiC composites.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20141\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Oxidation behaviors of yttrium silicate modified SiCf/SiC composites in air and water-oxygen environments
SiCf/SiC composites have emerged as one of the most promising materials for aero-engine hot-end structures. However, their performance is limited by their susceptibility to oxidation and corrosion reactions with oxygen and water vapor. To overcome this challenge, antioxidant-modified phases are introduced into matrices of SiCf/SiC composites which improve their water and oxygen resistance. In this study, the resistance of SiCf/SiC composites modified by yttrium silicate matrix (SiCf/SiC-YS composites) to air at 1000–1400°C and water-oxygen environments at 1200°C was investigated. The diffusion paths of oxygen in SiCf/SiC-YS composites and the antioxidant behavior of the yttrium silicate matrix were discussed. Additionally, the differences in oxygen and water-oxygen corrosion resistance of SiCf/SiC-YS composites at the same temperature were compared. The strength retention of SiCf/SiC-YS composites after oxidation and water-oxygen corrosion at 1200°C were 138.6% and 108.8%, respectively. This indicates that the addition of water vapor accelerated the degradation of SiCf/SiC-YS composites. By comparing with SiCf/SiC composites, it can be concluded that the modification of the yttrium silicate matrix considerably improved the oxidation resistance of SiCf/SiC composites.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.