Roumaissa Boumaraf, Sami Khettaf, Fatiha Benmahdi, Rida Masmoudi, Mousaab Belarbi, Azedine Ferhati
{"title":"利用活性炭和纳滤技术去除水溶液中的啶虫脒的优化和比较分析","authors":"Roumaissa Boumaraf, Sami Khettaf, Fatiha Benmahdi, Rida Masmoudi, Mousaab Belarbi, Azedine Ferhati","doi":"10.1007/s13399-024-06151-7","DOIUrl":null,"url":null,"abstract":"<p>Acetamiprid (ACMP) is a significant neonicotinoid insecticide recognized for its efficacy against various insects. The increasing use of insecticides in agriculture substantially threatens water resources and ecosystems. Thus, effectively removing pesticide residues is crucial to mitigating the adverse effects of conventional agricultural practices. This study aims to enhance the elimination of ACMP from water using a dual approach: nanofiltration and activated carbon derived from silver berry seeds. Various physicochemical parameters, including contact time, AC dose, agitation speed, and the initial pH, were examined to understand their impact on the ACMP removal process through adsorption. Remarkably, a 97% removal of ACMP was achieved under a contact time of 90 min, an agitation speed of 300 rpm, and an AC dosage of 500 mg·L<sup>−1</sup>. The adsorption equilibrium data were modeled using the Freundlich, Langmuir, and Temkin isotherm models, with the Langmuir model providing the best fit and indicating a maximum adsorption capacity of 193.92 mg·g<sup>−1</sup>. Kinetic studies with PFO and PSO models showed that the PSO model provided an excellent fit with high regression coefficients (<i>R</i><sup>2</sup>). Thermodynamic analysis confirmed that the adsorption process is both endothermic and spontaneous. Concurrently, the nanofiltration process was optimized by examining the initial pH, recirculation flow rate, initial ACMP concentration, and the presence of salts. Results indicated a remarkable removal efficiency of 97.5% at a 6-bar transmembrane pressure and 750 mL·min<sup>−1</sup> as a recirculation flow rate. This study validates nanofiltration for ACMP removal, offering insights into mitigating pesticide residues’ environmental impact</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"17 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and comparative analysis of acetamiprid removal from aqueous solutions using activated carbon and nanofiltration techniques\",\"authors\":\"Roumaissa Boumaraf, Sami Khettaf, Fatiha Benmahdi, Rida Masmoudi, Mousaab Belarbi, Azedine Ferhati\",\"doi\":\"10.1007/s13399-024-06151-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acetamiprid (ACMP) is a significant neonicotinoid insecticide recognized for its efficacy against various insects. The increasing use of insecticides in agriculture substantially threatens water resources and ecosystems. Thus, effectively removing pesticide residues is crucial to mitigating the adverse effects of conventional agricultural practices. This study aims to enhance the elimination of ACMP from water using a dual approach: nanofiltration and activated carbon derived from silver berry seeds. Various physicochemical parameters, including contact time, AC dose, agitation speed, and the initial pH, were examined to understand their impact on the ACMP removal process through adsorption. Remarkably, a 97% removal of ACMP was achieved under a contact time of 90 min, an agitation speed of 300 rpm, and an AC dosage of 500 mg·L<sup>−1</sup>. The adsorption equilibrium data were modeled using the Freundlich, Langmuir, and Temkin isotherm models, with the Langmuir model providing the best fit and indicating a maximum adsorption capacity of 193.92 mg·g<sup>−1</sup>. Kinetic studies with PFO and PSO models showed that the PSO model provided an excellent fit with high regression coefficients (<i>R</i><sup>2</sup>). Thermodynamic analysis confirmed that the adsorption process is both endothermic and spontaneous. Concurrently, the nanofiltration process was optimized by examining the initial pH, recirculation flow rate, initial ACMP concentration, and the presence of salts. Results indicated a remarkable removal efficiency of 97.5% at a 6-bar transmembrane pressure and 750 mL·min<sup>−1</sup> as a recirculation flow rate. This study validates nanofiltration for ACMP removal, offering insights into mitigating pesticide residues’ environmental impact</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06151-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06151-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization and comparative analysis of acetamiprid removal from aqueous solutions using activated carbon and nanofiltration techniques
Acetamiprid (ACMP) is a significant neonicotinoid insecticide recognized for its efficacy against various insects. The increasing use of insecticides in agriculture substantially threatens water resources and ecosystems. Thus, effectively removing pesticide residues is crucial to mitigating the adverse effects of conventional agricultural practices. This study aims to enhance the elimination of ACMP from water using a dual approach: nanofiltration and activated carbon derived from silver berry seeds. Various physicochemical parameters, including contact time, AC dose, agitation speed, and the initial pH, were examined to understand their impact on the ACMP removal process through adsorption. Remarkably, a 97% removal of ACMP was achieved under a contact time of 90 min, an agitation speed of 300 rpm, and an AC dosage of 500 mg·L−1. The adsorption equilibrium data were modeled using the Freundlich, Langmuir, and Temkin isotherm models, with the Langmuir model providing the best fit and indicating a maximum adsorption capacity of 193.92 mg·g−1. Kinetic studies with PFO and PSO models showed that the PSO model provided an excellent fit with high regression coefficients (R2). Thermodynamic analysis confirmed that the adsorption process is both endothermic and spontaneous. Concurrently, the nanofiltration process was optimized by examining the initial pH, recirculation flow rate, initial ACMP concentration, and the presence of salts. Results indicated a remarkable removal efficiency of 97.5% at a 6-bar transmembrane pressure and 750 mL·min−1 as a recirculation flow rate. This study validates nanofiltration for ACMP removal, offering insights into mitigating pesticide residues’ environmental impact
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.