Swethashree Rajendran, Ashmitha Kalairaj, T. Senthilvelan
{"title":"利用漆酶对各种偶氮染料进行酶法脱色以减少工业污染的综述","authors":"Swethashree Rajendran, Ashmitha Kalairaj, T. Senthilvelan","doi":"10.1007/s13399-024-06104-0","DOIUrl":null,"url":null,"abstract":"<p>Dye wastes discharged into water bodies without proper treatment from various industries pose significant environmental hazards due to their carcinogenic, mutagenic, and highly toxic nature. Traditional dye wastewater treatment methods often achieve limited degradation efficiencies, typically between 40 and 60%. In response, various advanced oxidation processes (AOPs) have emerged, offering improved degradation rates of 80 to 90%. However, AOPs are associated with high-energy consumption, maintenance costs, and sludge disposal challenges, which have led to increased interest in oxidase enzymes as alternatives, offering similar dye degradation capabilities with zero disposal costs, eco-friendly production, and reduced energy consumption. Among the oxidase enzymes, laccase, derived from bacteria, fungi, plants, and insects, has demonstrated up to 90% dye degradation efficiency, with and without a mediator system. Laccase-treated samples showed a 65% reduction in toxicity (<i>p</i> < 0.05) and a 70% improvement in water quality metrics compared to untreated wastewater. This review comprehensively examines the enzymatic decolorization of various azo dyes using laccase, highlighting its potential for industrial pollution abatement by exploring the mechanisms, efficiency, and practical applications of laccase in treating dye wastewater, aiming to provide a thorough understanding of its role in mitigating environmental pollution from industrial sources.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"75 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review on enzymatic decolorization of various azo dyes using laccase for the abatement of industrial pollution\",\"authors\":\"Swethashree Rajendran, Ashmitha Kalairaj, T. Senthilvelan\",\"doi\":\"10.1007/s13399-024-06104-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dye wastes discharged into water bodies without proper treatment from various industries pose significant environmental hazards due to their carcinogenic, mutagenic, and highly toxic nature. Traditional dye wastewater treatment methods often achieve limited degradation efficiencies, typically between 40 and 60%. In response, various advanced oxidation processes (AOPs) have emerged, offering improved degradation rates of 80 to 90%. However, AOPs are associated with high-energy consumption, maintenance costs, and sludge disposal challenges, which have led to increased interest in oxidase enzymes as alternatives, offering similar dye degradation capabilities with zero disposal costs, eco-friendly production, and reduced energy consumption. Among the oxidase enzymes, laccase, derived from bacteria, fungi, plants, and insects, has demonstrated up to 90% dye degradation efficiency, with and without a mediator system. Laccase-treated samples showed a 65% reduction in toxicity (<i>p</i> < 0.05) and a 70% improvement in water quality metrics compared to untreated wastewater. This review comprehensively examines the enzymatic decolorization of various azo dyes using laccase, highlighting its potential for industrial pollution abatement by exploring the mechanisms, efficiency, and practical applications of laccase in treating dye wastewater, aiming to provide a thorough understanding of its role in mitigating environmental pollution from industrial sources.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06104-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06104-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A comprehensive review on enzymatic decolorization of various azo dyes using laccase for the abatement of industrial pollution
Dye wastes discharged into water bodies without proper treatment from various industries pose significant environmental hazards due to their carcinogenic, mutagenic, and highly toxic nature. Traditional dye wastewater treatment methods often achieve limited degradation efficiencies, typically between 40 and 60%. In response, various advanced oxidation processes (AOPs) have emerged, offering improved degradation rates of 80 to 90%. However, AOPs are associated with high-energy consumption, maintenance costs, and sludge disposal challenges, which have led to increased interest in oxidase enzymes as alternatives, offering similar dye degradation capabilities with zero disposal costs, eco-friendly production, and reduced energy consumption. Among the oxidase enzymes, laccase, derived from bacteria, fungi, plants, and insects, has demonstrated up to 90% dye degradation efficiency, with and without a mediator system. Laccase-treated samples showed a 65% reduction in toxicity (p < 0.05) and a 70% improvement in water quality metrics compared to untreated wastewater. This review comprehensively examines the enzymatic decolorization of various azo dyes using laccase, highlighting its potential for industrial pollution abatement by exploring the mechanisms, efficiency, and practical applications of laccase in treating dye wastewater, aiming to provide a thorough understanding of its role in mitigating environmental pollution from industrial sources.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.