支持超大规模应用的 ArborX 技术进步

Andrey Prokopenko, Daniel Arndt, Damien Lebrun-Grandié, Bruno Turcksin, Nicholas Frontiere, J. D. Emberson, Michael Buehlmann
{"title":"支持超大规模应用的 ArborX 技术进步","authors":"Andrey Prokopenko, Daniel Arndt, Damien Lebrun-Grandié, Bruno Turcksin, Nicholas Frontiere, J. D. Emberson, Michael Buehlmann","doi":"arxiv-2409.10743","DOIUrl":null,"url":null,"abstract":"ArborX is a performance portable geometric search library developed as part\nof the Exascale Computing Project (ECP). In this paper, we explore a\ncollaboration between ArborX and a cosmological simulation code HACC. Large\ncosmological simulations on exascale platforms encounter a bottleneck due to\nthe in-situ analysis requirements of halo finding, a problem of identifying\ndense clusters of dark matter (halos). This problem is solved by using a\ndensity-based DBSCAN clustering algorithm. With each MPI rank handling hundreds\nof millions of particles, it is imperative for the DBSCAN implementation to be\nefficient. In addition, the requirement to support exascale supercomputers from\ndifferent vendors necessitates performance portability of the algorithm. We\ndescribe how this challenge problem guided ArborX development, and enhanced the\nperformance and the scope of the library. We explore the improvements in the\nbasic algorithms for the underlying search index to improve the performance,\nand describe several implementations of DBSCAN in ArborX. Further, we report\nthe history of the changes in ArborX and their effect on the time to solve a\nrepresentative benchmark problem, as well as demonstrate the real world impact\non production end-to-end cosmology simulations.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"315 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in ArborX to support exascale applications\",\"authors\":\"Andrey Prokopenko, Daniel Arndt, Damien Lebrun-Grandié, Bruno Turcksin, Nicholas Frontiere, J. D. Emberson, Michael Buehlmann\",\"doi\":\"arxiv-2409.10743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ArborX is a performance portable geometric search library developed as part\\nof the Exascale Computing Project (ECP). In this paper, we explore a\\ncollaboration between ArborX and a cosmological simulation code HACC. Large\\ncosmological simulations on exascale platforms encounter a bottleneck due to\\nthe in-situ analysis requirements of halo finding, a problem of identifying\\ndense clusters of dark matter (halos). This problem is solved by using a\\ndensity-based DBSCAN clustering algorithm. With each MPI rank handling hundreds\\nof millions of particles, it is imperative for the DBSCAN implementation to be\\nefficient. In addition, the requirement to support exascale supercomputers from\\ndifferent vendors necessitates performance portability of the algorithm. We\\ndescribe how this challenge problem guided ArborX development, and enhanced the\\nperformance and the scope of the library. We explore the improvements in the\\nbasic algorithms for the underlying search index to improve the performance,\\nand describe several implementations of DBSCAN in ArborX. Further, we report\\nthe history of the changes in ArborX and their effect on the time to solve a\\nrepresentative benchmark problem, as well as demonstrate the real world impact\\non production end-to-end cosmology simulations.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"315 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ArborX 是一个性能可移植的几何搜索库,是超大规模计算项目(ECP)的一部分。本文探讨了 ArborX 与宇宙学模拟代码 HACC 之间的合作。在超大规模平台上进行的大型宇宙学模拟遇到了一个瓶颈,这是因为需要在原位分析中找到 "光环"(halo finding),这是一个识别暗物质(光环)密集集群的问题。这个问题通过使用基于密度的 DBSCAN 聚类算法来解决。由于每个 MPI 级都要处理数以亿计的粒子,因此 DBSCAN 的实现必须高效。此外,为了支持来自不同供应商的超大规模超级计算机,算法的性能可移植性也是必不可少的。我们描述了这一挑战性问题如何指导 ArborX 的开发,以及如何提高算法库的性能和范围。我们探讨了如何改进底层搜索索引的基本算法以提高性能,并描述了 ArborX 中 DBSCAN 的几种实现。此外,我们还报告了 ArborX 的变化历史及其对解决代表性基准问题时间的影响,并展示了其对生产端到端宇宙学模拟的实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in ArborX to support exascale applications
ArborX is a performance portable geometric search library developed as part of the Exascale Computing Project (ECP). In this paper, we explore a collaboration between ArborX and a cosmological simulation code HACC. Large cosmological simulations on exascale platforms encounter a bottleneck due to the in-situ analysis requirements of halo finding, a problem of identifying dense clusters of dark matter (halos). This problem is solved by using a density-based DBSCAN clustering algorithm. With each MPI rank handling hundreds of millions of particles, it is imperative for the DBSCAN implementation to be efficient. In addition, the requirement to support exascale supercomputers from different vendors necessitates performance portability of the algorithm. We describe how this challenge problem guided ArborX development, and enhanced the performance and the scope of the library. We explore the improvements in the basic algorithms for the underlying search index to improve the performance, and describe several implementations of DBSCAN in ArborX. Further, we report the history of the changes in ArborX and their effect on the time to solve a representative benchmark problem, as well as demonstrate the real world impact on production end-to-end cosmology simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1