{"title":"有机太阳能电池非富勒烯受体材料的最新进展","authors":"Qing Wu, Sha Ding, Aokui Sun, Yong Xia","doi":"10.1016/j.mtchem.2024.102290","DOIUrl":null,"url":null,"abstract":"Recently, with the response to national environmental protection initiatives, the development of clean energy has become a hot topic. Organic solar cells, as an emerging clean energy technology, have received widespread favor from researchers due to their advantages such as flexibility, light weight, solution processability, and easy regulation, and have made breakthrough progress. Non-fullerene acceptor materials, as a key component of organic solar cells, have attracted widespread attention in recent years. At present, the power conversion efficiency of organic solar cells based on Y-series fused-ring non-fullerene acceptor materials has exceeded 20 %. According to different structural types of non-fullerene acceptor molecules, this article reviews the research progress of non-fullerene acceptor molecules and their photoelectric properties in recent years from various aspects such as core skeleton engineering, side chain engineering, and end group modification, and prospects the future research directions and application prospects of non-fullerene acceptors.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"47 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress on non-fullerene acceptor materials for organic solar cells\",\"authors\":\"Qing Wu, Sha Ding, Aokui Sun, Yong Xia\",\"doi\":\"10.1016/j.mtchem.2024.102290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, with the response to national environmental protection initiatives, the development of clean energy has become a hot topic. Organic solar cells, as an emerging clean energy technology, have received widespread favor from researchers due to their advantages such as flexibility, light weight, solution processability, and easy regulation, and have made breakthrough progress. Non-fullerene acceptor materials, as a key component of organic solar cells, have attracted widespread attention in recent years. At present, the power conversion efficiency of organic solar cells based on Y-series fused-ring non-fullerene acceptor materials has exceeded 20 %. According to different structural types of non-fullerene acceptor molecules, this article reviews the research progress of non-fullerene acceptor molecules and their photoelectric properties in recent years from various aspects such as core skeleton engineering, side chain engineering, and end group modification, and prospects the future research directions and application prospects of non-fullerene acceptors.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102290\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102290","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
近来,随着国家环保举措的响应,清洁能源的发展成为热门话题。有机太阳能电池作为一种新兴的清洁能源技术,以其柔性、轻质、可溶液加工、易调节等优点受到研究人员的广泛青睐,并取得了突破性进展。非富勒烯受体材料作为有机太阳能电池的关键组成部分,近年来受到广泛关注。目前,基于 Y 系列熔环非富勒烯受体材料的有机太阳能电池的功率转换效率已超过 20%。本文根据非富勒烯受体分子的不同结构类型,从核心骨架工程、侧链工程、端基修饰等多个方面回顾了近年来非富勒烯受体分子及其光电性能的研究进展,并展望了非富勒烯受体的未来研究方向和应用前景。
Recent progress on non-fullerene acceptor materials for organic solar cells
Recently, with the response to national environmental protection initiatives, the development of clean energy has become a hot topic. Organic solar cells, as an emerging clean energy technology, have received widespread favor from researchers due to their advantages such as flexibility, light weight, solution processability, and easy regulation, and have made breakthrough progress. Non-fullerene acceptor materials, as a key component of organic solar cells, have attracted widespread attention in recent years. At present, the power conversion efficiency of organic solar cells based on Y-series fused-ring non-fullerene acceptor materials has exceeded 20 %. According to different structural types of non-fullerene acceptor molecules, this article reviews the research progress of non-fullerene acceptor molecules and their photoelectric properties in recent years from various aspects such as core skeleton engineering, side chain engineering, and end group modification, and prospects the future research directions and application prospects of non-fullerene acceptors.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.