用于软物质系统的通用材料模型子程序

IF 8.7 2区 工程技术 Q1 Mathematics Engineering with Computers Pub Date : 2024-09-18 DOI:10.1007/s00366-024-02031-w
Mathias Peirlinck, Juan A. Hurtado, Manuel K. Rausch, Adrián Buganza Tepole, Ellen Kuhl
{"title":"用于软物质系统的通用材料模型子程序","authors":"Mathias Peirlinck, Juan A. Hurtado, Manuel K. Rausch, Adrián Buganza Tepole, Ellen Kuhl","doi":"10.1007/s00366-024-02031-w","DOIUrl":null,"url":null,"abstract":"<p>Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health, and their accurate modeling is critical to understand their unique properties and functions. Today’s finite element analysis packages come with a set of pre-programmed material models, which may exhibit restricted validity in capturing the intricate mechanical behavior of these materials. Regrettably, incorporating a modified or novel material model in a finite element analysis package requires non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer programming, making it a complex task that is prone to human error. Here we design a universal material subroutine, which automates the integration of novel constitutive models of varying complexity in non-linear finite element packages, with no additional analytical derivations and algorithmic implementations. We demonstrate the versatility of our approach to seamlessly integrate innovative constitutive models from the material point to the structural level through a variety of soft matter case studies: a frontal impact to the brain; reconstructive surgery of the scalp; diastolic loading of arteries and the human heart; and the dynamic closing of the tricuspid valve. Our universal material subroutine empowers all users, not solely experts, to conduct reliable engineering analysis of soft matter systems. We envision that this framework will become an indispensable instrument for continued innovation and discovery within the soft matter community at large.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal material model subroutine for soft matter systems\",\"authors\":\"Mathias Peirlinck, Juan A. Hurtado, Manuel K. Rausch, Adrián Buganza Tepole, Ellen Kuhl\",\"doi\":\"10.1007/s00366-024-02031-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health, and their accurate modeling is critical to understand their unique properties and functions. Today’s finite element analysis packages come with a set of pre-programmed material models, which may exhibit restricted validity in capturing the intricate mechanical behavior of these materials. Regrettably, incorporating a modified or novel material model in a finite element analysis package requires non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer programming, making it a complex task that is prone to human error. Here we design a universal material subroutine, which automates the integration of novel constitutive models of varying complexity in non-linear finite element packages, with no additional analytical derivations and algorithmic implementations. We demonstrate the versatility of our approach to seamlessly integrate innovative constitutive models from the material point to the structural level through a variety of soft matter case studies: a frontal impact to the brain; reconstructive surgery of the scalp; diastolic loading of arteries and the human heart; and the dynamic closing of the tricuspid valve. Our universal material subroutine empowers all users, not solely experts, to conduct reliable engineering analysis of soft matter systems. We envision that this framework will become an indispensable instrument for continued innovation and discovery within the soft matter community at large.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02031-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02031-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

软材料在现代生活的许多方面都发挥着不可或缺的作用,包括自主性、可持续性和人类健康,而对其进行精确建模对于了解其独特属性和功能至关重要。现今的有限元分析软件包带有一套预编程的材料模型,这些模型在捕捉这些材料复杂的机械行为方面可能会表现出有限的有效性。遗憾的是,在有限元分析软件包中加入修改过的或新颖的材料模型,需要张量代数、连续介质力学和计算机编程等方面的深厚知识,因此是一项容易出现人为错误的复杂任务。在这里,我们设计了一个通用材料子程序,它可以自动将复杂程度不同的新型结构模型集成到非线性有限元软件包中,而无需额外的分析推导和算法实现。我们通过各种软物质案例研究,展示了我们的方法在从材料点到结构层面无缝集成创新构造模型方面的多功能性:对大脑的正面撞击;头皮的重建手术;动脉和人体心脏的舒张负荷;以及三尖瓣的动态关闭。我们的通用材料子程序使所有用户,而不仅仅是专家,都能对软物质系统进行可靠的工程分析。我们设想,这个框架将成为整个软物质界持续创新和探索不可或缺的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A universal material model subroutine for soft matter systems

Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health, and their accurate modeling is critical to understand their unique properties and functions. Today’s finite element analysis packages come with a set of pre-programmed material models, which may exhibit restricted validity in capturing the intricate mechanical behavior of these materials. Regrettably, incorporating a modified or novel material model in a finite element analysis package requires non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer programming, making it a complex task that is prone to human error. Here we design a universal material subroutine, which automates the integration of novel constitutive models of varying complexity in non-linear finite element packages, with no additional analytical derivations and algorithmic implementations. We demonstrate the versatility of our approach to seamlessly integrate innovative constitutive models from the material point to the structural level through a variety of soft matter case studies: a frontal impact to the brain; reconstructive surgery of the scalp; diastolic loading of arteries and the human heart; and the dynamic closing of the tricuspid valve. Our universal material subroutine empowers all users, not solely experts, to conduct reliable engineering analysis of soft matter systems. We envision that this framework will become an indispensable instrument for continued innovation and discovery within the soft matter community at large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
期刊最新文献
A universal material model subroutine for soft matter systems A second-generation URANS model (STRUCT- $$\epsilon $$ ) applied to a generic side mirror and its impact on sound generation Multiphysics discovery with moving boundaries using Ensemble SINDy and peridynamic differential operator Adaptive Kriging-based method with learning function allocation scheme and hybrid convergence criterion for efficient structural reliability analysis A new kernel-based approach for solving general fractional (integro)-differential-algebraic equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1