{"title":"应用于通用侧后视镜的第二代 URANS 模型(STRUCT- $$\\epsilon $$ )及其对声音产生的影响","authors":"J. Munoz-Paniagua, J. García, E. Latorre-Iglesias","doi":"10.1007/s00366-024-02060-5","DOIUrl":null,"url":null,"abstract":"<p>A generic side mirror can be approximated to the combination of a half cylinder topped with a quarter of sphere. The flow structure in the wake of the side mirror is highly transient and the turbulence plays an important role affecting aeroacoustics through pressure fluctuation. Thus, this geometry is one of the test cases object of several numerical studies in recent years to assess the aerodynamic and aeroacoustic capabilities of the turbulence models. In this context, this study presents how the second-generation URANS closure STRUCT-<span>\\(\\epsilon \\)</span> is able to properly predict the expected stagnation, flow separation and vortex shedding phenomena. Besides, the predictive accuracy for the noise generation mechanism is evaluated by comparing the spectra of the sound pressure level measured at several static pressure sensors with the numerical results obtained with the STRUCT-<span>\\(\\epsilon \\)</span>. The response of this turbulence model has exceeded that from other hybrid methods and is in good agreement with the results from Large-Eddy Simulations or the experiments. To conclude the paper, the applicability of STRUCT-<span>\\(\\epsilon \\)</span> to construct a Spectral Proper Orthogonal Decomposition method that helps identifying the most energetic modes to appropriately capture the dominant flow structures is also introduced.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"76 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second-generation URANS model (STRUCT- $$\\\\epsilon $$ ) applied to a generic side mirror and its impact on sound generation\",\"authors\":\"J. Munoz-Paniagua, J. García, E. Latorre-Iglesias\",\"doi\":\"10.1007/s00366-024-02060-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generic side mirror can be approximated to the combination of a half cylinder topped with a quarter of sphere. The flow structure in the wake of the side mirror is highly transient and the turbulence plays an important role affecting aeroacoustics through pressure fluctuation. Thus, this geometry is one of the test cases object of several numerical studies in recent years to assess the aerodynamic and aeroacoustic capabilities of the turbulence models. In this context, this study presents how the second-generation URANS closure STRUCT-<span>\\\\(\\\\epsilon \\\\)</span> is able to properly predict the expected stagnation, flow separation and vortex shedding phenomena. Besides, the predictive accuracy for the noise generation mechanism is evaluated by comparing the spectra of the sound pressure level measured at several static pressure sensors with the numerical results obtained with the STRUCT-<span>\\\\(\\\\epsilon \\\\)</span>. The response of this turbulence model has exceeded that from other hybrid methods and is in good agreement with the results from Large-Eddy Simulations or the experiments. To conclude the paper, the applicability of STRUCT-<span>\\\\(\\\\epsilon \\\\)</span> to construct a Spectral Proper Orthogonal Decomposition method that helps identifying the most energetic modes to appropriately capture the dominant flow structures is also introduced.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02060-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02060-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A second-generation URANS model (STRUCT- $$\epsilon $$ ) applied to a generic side mirror and its impact on sound generation
A generic side mirror can be approximated to the combination of a half cylinder topped with a quarter of sphere. The flow structure in the wake of the side mirror is highly transient and the turbulence plays an important role affecting aeroacoustics through pressure fluctuation. Thus, this geometry is one of the test cases object of several numerical studies in recent years to assess the aerodynamic and aeroacoustic capabilities of the turbulence models. In this context, this study presents how the second-generation URANS closure STRUCT-\(\epsilon \) is able to properly predict the expected stagnation, flow separation and vortex shedding phenomena. Besides, the predictive accuracy for the noise generation mechanism is evaluated by comparing the spectra of the sound pressure level measured at several static pressure sensors with the numerical results obtained with the STRUCT-\(\epsilon \). The response of this turbulence model has exceeded that from other hybrid methods and is in good agreement with the results from Large-Eddy Simulations or the experiments. To conclude the paper, the applicability of STRUCT-\(\epsilon \) to construct a Spectral Proper Orthogonal Decomposition method that helps identifying the most energetic modes to appropriately capture the dominant flow structures is also introduced.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.