Yuan Li, Yuan Guo, Tao Suo, Xiaogang Li, Yuquan Wen
{"title":"多点起爆期间起爆驱动的重叠效应","authors":"Yuan Li, Yuan Guo, Tao Suo, Xiaogang Li, Yuquan Wen","doi":"10.1063/5.0231221","DOIUrl":null,"url":null,"abstract":"Employing multi-point initiation in warhead structures produces a detonation wave aiming warhead. Numerous studies have concentrated on enhancing the velocity and analyzing its distribution in this type of warhead. Researchers have developed formulas for the velocity distribution of asymmetrically one-line initiated warheads; however, a reliable and complete calculation method for the velocity distribution in asymmetrically two-line initiated warheads is yet to be established. A new idea is proposed and verified in this work: the velocity distribution for the asymmetric two-line initiation can be derived from that of the one-line initiation. Initial efforts include conducting experimentally verified numerical modeling to examine the propagation and interaction of detonation waves in asymmetrically two-line initiated warheads. Subsequently, using the principle of independent propagation, a model is formulated to use the velocity distribution from asymmetric one-line initiation to predict that of asymmetric two-line initiations. Finally, arena tests are performed to corroborate the overlapping model. This research can provide valuable insights for lethality assessment, protection design, and security analysis.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"3 3 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overlapping effect of detonation driving during multi-point initiation\",\"authors\":\"Yuan Li, Yuan Guo, Tao Suo, Xiaogang Li, Yuquan Wen\",\"doi\":\"10.1063/5.0231221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing multi-point initiation in warhead structures produces a detonation wave aiming warhead. Numerous studies have concentrated on enhancing the velocity and analyzing its distribution in this type of warhead. Researchers have developed formulas for the velocity distribution of asymmetrically one-line initiated warheads; however, a reliable and complete calculation method for the velocity distribution in asymmetrically two-line initiated warheads is yet to be established. A new idea is proposed and verified in this work: the velocity distribution for the asymmetric two-line initiation can be derived from that of the one-line initiation. Initial efforts include conducting experimentally verified numerical modeling to examine the propagation and interaction of detonation waves in asymmetrically two-line initiated warheads. Subsequently, using the principle of independent propagation, a model is formulated to use the velocity distribution from asymmetric one-line initiation to predict that of asymmetric two-line initiations. Finally, arena tests are performed to corroborate the overlapping model. This research can provide valuable insights for lethality assessment, protection design, and security analysis.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"3 3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231221\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0231221","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Overlapping effect of detonation driving during multi-point initiation
Employing multi-point initiation in warhead structures produces a detonation wave aiming warhead. Numerous studies have concentrated on enhancing the velocity and analyzing its distribution in this type of warhead. Researchers have developed formulas for the velocity distribution of asymmetrically one-line initiated warheads; however, a reliable and complete calculation method for the velocity distribution in asymmetrically two-line initiated warheads is yet to be established. A new idea is proposed and verified in this work: the velocity distribution for the asymmetric two-line initiation can be derived from that of the one-line initiation. Initial efforts include conducting experimentally verified numerical modeling to examine the propagation and interaction of detonation waves in asymmetrically two-line initiated warheads. Subsequently, using the principle of independent propagation, a model is formulated to use the velocity distribution from asymmetric one-line initiation to predict that of asymmetric two-line initiations. Finally, arena tests are performed to corroborate the overlapping model. This research can provide valuable insights for lethality assessment, protection design, and security analysis.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves