Dong-qi Huang, Zi-xuan Fang, Tao Hu, Qingfei Fu, Lijun Yang
{"title":"被气流包围的液体环形射流中瞬态增长的非模式分析","authors":"Dong-qi Huang, Zi-xuan Fang, Tao Hu, Qingfei Fu, Lijun Yang","doi":"10.1063/5.0228927","DOIUrl":null,"url":null,"abstract":"Transient energy growth is a common mathematical concept in many fluid flow systems, and it has been widely investigated in recent years using non-modal analysis. Non-modal analysis can characterize the short-term energy amplification of perturbations, which is influenced by the Reynolds number, the Weber number, and the initial conditions such as the wavenumber. In gas–liquid coaxial nozzles, annular jets are often produced, and their breakup process is influenced by transient energy growth. However, research in this area has been limited so far. This paper for the first time investigates the transient energy growth of an annular liquid jet in static gas and validates it using a modified annular jet model. In the derivation process, the gas–liquid interfaces inside and outside the annular liquid film are taken into account. It has been found that there exists an optimal initial condition for a certain Reynolds number and a Weber number. The increase in the Reynolds number and ratio of inner and outer radius of the annular jet can maximize the transient growth under a specific initial wavenumber, while the increase in gas/liquid density ratio and the Weber number will minimize the transient growth. It is also found that transient energy growth is caused by the displacement of the free boundary.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"206 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-modal analysis of transient growth in a liquid annular jet surrounded by gas flow\",\"authors\":\"Dong-qi Huang, Zi-xuan Fang, Tao Hu, Qingfei Fu, Lijun Yang\",\"doi\":\"10.1063/5.0228927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transient energy growth is a common mathematical concept in many fluid flow systems, and it has been widely investigated in recent years using non-modal analysis. Non-modal analysis can characterize the short-term energy amplification of perturbations, which is influenced by the Reynolds number, the Weber number, and the initial conditions such as the wavenumber. In gas–liquid coaxial nozzles, annular jets are often produced, and their breakup process is influenced by transient energy growth. However, research in this area has been limited so far. This paper for the first time investigates the transient energy growth of an annular liquid jet in static gas and validates it using a modified annular jet model. In the derivation process, the gas–liquid interfaces inside and outside the annular liquid film are taken into account. It has been found that there exists an optimal initial condition for a certain Reynolds number and a Weber number. The increase in the Reynolds number and ratio of inner and outer radius of the annular jet can maximize the transient growth under a specific initial wavenumber, while the increase in gas/liquid density ratio and the Weber number will minimize the transient growth. It is also found that transient energy growth is caused by the displacement of the free boundary.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228927\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228927","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Non-modal analysis of transient growth in a liquid annular jet surrounded by gas flow
Transient energy growth is a common mathematical concept in many fluid flow systems, and it has been widely investigated in recent years using non-modal analysis. Non-modal analysis can characterize the short-term energy amplification of perturbations, which is influenced by the Reynolds number, the Weber number, and the initial conditions such as the wavenumber. In gas–liquid coaxial nozzles, annular jets are often produced, and their breakup process is influenced by transient energy growth. However, research in this area has been limited so far. This paper for the first time investigates the transient energy growth of an annular liquid jet in static gas and validates it using a modified annular jet model. In the derivation process, the gas–liquid interfaces inside and outside the annular liquid film are taken into account. It has been found that there exists an optimal initial condition for a certain Reynolds number and a Weber number. The increase in the Reynolds number and ratio of inner and outer radius of the annular jet can maximize the transient growth under a specific initial wavenumber, while the increase in gas/liquid density ratio and the Weber number will minimize the transient growth. It is also found that transient energy growth is caused by the displacement of the free boundary.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves