Ruosi Zha, Xinuo Tu, Junwen Liang, Zebin Liang, Mengshang Zhao, Kai Wang
{"title":"水上飞机在各种波浪条件下的排水特性以及仿生物浮筒的影响","authors":"Ruosi Zha, Xinuo Tu, Junwen Liang, Zebin Liang, Mengshang Zhao, Kai Wang","doi":"10.1063/5.0226888","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical investigation into the hydrodynamic loads and motions experienced by two seaplane models during ditching in calm water and regular waves. The original bare model is susceptible to jet flows and wave overwash at the nose, which can adversely impact the aircraft's ditching performance. To address these issues, we introduced two biomimetic floats symmetrically to the original model and assessed their influence on the ditching dynamics. A comparative analysis was conducted on the accelerations, impact loads, and the coupled heave and pitch motions of both the original and the redesigned model equipped with floats during ditching in both calm waters and regular waves. For the wave ditching scenario, a detailed investigation of the slamming phase was first carried out, involving impacts at the wave's zero-crossing, crest, and trough. The cases with a variety of wave heights, wave lengths, and wave headings were evaluated. A particular focus was placed on understanding how the biomimetic floats affect the seaplane's performance during ditching in both calm and wavy conditions. The analysis of maximum accelerations and pitch angles during wave ditching revealed that slamming at the wave trough presents the most significant hazards. Additionally, the phenomena of gliding and wave overwash were identified as substantial risks under wave conditions. The results suggested that the biomimetic floats can effectively mitigate the maximum horizontal acceleration and pitch angle of the original model, enhancing the safety of ditching operations in both calm water and waves.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"23 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ditching characteristics of a seaplane under various wave conditions and effects of biomimetic floats\",\"authors\":\"Ruosi Zha, Xinuo Tu, Junwen Liang, Zebin Liang, Mengshang Zhao, Kai Wang\",\"doi\":\"10.1063/5.0226888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical investigation into the hydrodynamic loads and motions experienced by two seaplane models during ditching in calm water and regular waves. The original bare model is susceptible to jet flows and wave overwash at the nose, which can adversely impact the aircraft's ditching performance. To address these issues, we introduced two biomimetic floats symmetrically to the original model and assessed their influence on the ditching dynamics. A comparative analysis was conducted on the accelerations, impact loads, and the coupled heave and pitch motions of both the original and the redesigned model equipped with floats during ditching in both calm waters and regular waves. For the wave ditching scenario, a detailed investigation of the slamming phase was first carried out, involving impacts at the wave's zero-crossing, crest, and trough. The cases with a variety of wave heights, wave lengths, and wave headings were evaluated. A particular focus was placed on understanding how the biomimetic floats affect the seaplane's performance during ditching in both calm and wavy conditions. The analysis of maximum accelerations and pitch angles during wave ditching revealed that slamming at the wave trough presents the most significant hazards. Additionally, the phenomena of gliding and wave overwash were identified as substantial risks under wave conditions. The results suggested that the biomimetic floats can effectively mitigate the maximum horizontal acceleration and pitch angle of the original model, enhancing the safety of ditching operations in both calm water and waves.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226888\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226888","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Ditching characteristics of a seaplane under various wave conditions and effects of biomimetic floats
This paper presents a numerical investigation into the hydrodynamic loads and motions experienced by two seaplane models during ditching in calm water and regular waves. The original bare model is susceptible to jet flows and wave overwash at the nose, which can adversely impact the aircraft's ditching performance. To address these issues, we introduced two biomimetic floats symmetrically to the original model and assessed their influence on the ditching dynamics. A comparative analysis was conducted on the accelerations, impact loads, and the coupled heave and pitch motions of both the original and the redesigned model equipped with floats during ditching in both calm waters and regular waves. For the wave ditching scenario, a detailed investigation of the slamming phase was first carried out, involving impacts at the wave's zero-crossing, crest, and trough. The cases with a variety of wave heights, wave lengths, and wave headings were evaluated. A particular focus was placed on understanding how the biomimetic floats affect the seaplane's performance during ditching in both calm and wavy conditions. The analysis of maximum accelerations and pitch angles during wave ditching revealed that slamming at the wave trough presents the most significant hazards. Additionally, the phenomena of gliding and wave overwash were identified as substantial risks under wave conditions. The results suggested that the biomimetic floats can effectively mitigate the maximum horizontal acceleration and pitch angle of the original model, enhancing the safety of ditching operations in both calm water and waves.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves