{"title":"通过内部声学激励实现低雷诺数下的非稳态气动流控制","authors":"Joshua Kiley, Matthew White, Shreyas Narsipur","doi":"10.1063/5.0226647","DOIUrl":null,"url":null,"abstract":"Aerodynamic flow control using internal acoustic excitation holds promise as it combines the simplicity of passive flow control techniques (in terms of added weight and operational complexity) with the control authority of active flow control methods. While previous studies have analyzed the effects of acoustic excitation on steady-wing aerodynamics, the effect of excitation on the unsteady aerodynamics is not known, which is the aim of the current effort. Internally mounted speakers on a symmetric National Advisory Committee for Aeronautics (NACA) 0012 wing are used to excite the unsteady boundary layer at the wing's leading edge as it executes linear pitch motions ranging from quasi-steady (trailing-edge driven stall) to vortex-dominated (mixed leading- and trailing-edge driven stall) motions at freestream Reynolds numbers (Re) of 120 000 and 180 000. Experimental results show that, although acoustic excitation delays stall for quasi-steady motions, it enhances lift in the linear region and increases leading-edge vortex strength for vortex-dominated motions. The degree of change was observed to be a function of the excitation frequency, with lower frequencies (≤ 250 Hz) leading to an increase in aerodynamic efficiency and higher frequencies having a negligible effect. The current work establishes the effects of acoustic flow excitation in unsteady, low-Re wing aerodynamics and provides insights on the path forward to effectively implement the method for active flow control.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"5 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady aerodynamic flow control at low Reynolds numbers via internal acoustic excitation\",\"authors\":\"Joshua Kiley, Matthew White, Shreyas Narsipur\",\"doi\":\"10.1063/5.0226647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerodynamic flow control using internal acoustic excitation holds promise as it combines the simplicity of passive flow control techniques (in terms of added weight and operational complexity) with the control authority of active flow control methods. While previous studies have analyzed the effects of acoustic excitation on steady-wing aerodynamics, the effect of excitation on the unsteady aerodynamics is not known, which is the aim of the current effort. Internally mounted speakers on a symmetric National Advisory Committee for Aeronautics (NACA) 0012 wing are used to excite the unsteady boundary layer at the wing's leading edge as it executes linear pitch motions ranging from quasi-steady (trailing-edge driven stall) to vortex-dominated (mixed leading- and trailing-edge driven stall) motions at freestream Reynolds numbers (Re) of 120 000 and 180 000. Experimental results show that, although acoustic excitation delays stall for quasi-steady motions, it enhances lift in the linear region and increases leading-edge vortex strength for vortex-dominated motions. The degree of change was observed to be a function of the excitation frequency, with lower frequencies (≤ 250 Hz) leading to an increase in aerodynamic efficiency and higher frequencies having a negligible effect. The current work establishes the effects of acoustic flow excitation in unsteady, low-Re wing aerodynamics and provides insights on the path forward to effectively implement the method for active flow control.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226647\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226647","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Unsteady aerodynamic flow control at low Reynolds numbers via internal acoustic excitation
Aerodynamic flow control using internal acoustic excitation holds promise as it combines the simplicity of passive flow control techniques (in terms of added weight and operational complexity) with the control authority of active flow control methods. While previous studies have analyzed the effects of acoustic excitation on steady-wing aerodynamics, the effect of excitation on the unsteady aerodynamics is not known, which is the aim of the current effort. Internally mounted speakers on a symmetric National Advisory Committee for Aeronautics (NACA) 0012 wing are used to excite the unsteady boundary layer at the wing's leading edge as it executes linear pitch motions ranging from quasi-steady (trailing-edge driven stall) to vortex-dominated (mixed leading- and trailing-edge driven stall) motions at freestream Reynolds numbers (Re) of 120 000 and 180 000. Experimental results show that, although acoustic excitation delays stall for quasi-steady motions, it enhances lift in the linear region and increases leading-edge vortex strength for vortex-dominated motions. The degree of change was observed to be a function of the excitation frequency, with lower frequencies (≤ 250 Hz) leading to an increase in aerodynamic efficiency and higher frequencies having a negligible effect. The current work establishes the effects of acoustic flow excitation in unsteady, low-Re wing aerodynamics and provides insights on the path forward to effectively implement the method for active flow control.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves