{"title":"基于孤子的输电线纳米离子电流建模","authors":"U. Akram, A. Alhushaybari, A. M. Alharthi","doi":"10.1063/5.0231980","DOIUrl":null,"url":null,"abstract":"Many nonlinear evolution equations, such as the nano-ionic currents (NIC) equation, are used extensively in many scientific and technological domains particularly in nanoelectronics and bioelectronics. The mathematical modeling of NIC phenomena is vital for understanding their behavior and optimizing device performance. Our research leverages an array of mathematical methods, including multi-wave analysis, periodic wave solutions, lump soliton dynamics, breather wave phenomena, homoclinic breathers, M-shaped waveforms, and rogue wave analysis. Additionally, our investigation encompasses the exploration of single kink and double kink configurations, interactions between periodic and kink waves, interaction between M shaped with kink and rogue, interaction between M shaped with one kink, interaction between M shaped with kink and periodic, interaction between M shaped with two kinks as well as periodic wave interactions with lump waves. To further emphasize the structure of solutions derived from particular parameter choices, we include three-dimensional, two-dimensional, streamplot, and contour graphs.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"188 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton-based modeling of nano-ionic currents in transmission line\",\"authors\":\"U. Akram, A. Alhushaybari, A. M. Alharthi\",\"doi\":\"10.1063/5.0231980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many nonlinear evolution equations, such as the nano-ionic currents (NIC) equation, are used extensively in many scientific and technological domains particularly in nanoelectronics and bioelectronics. The mathematical modeling of NIC phenomena is vital for understanding their behavior and optimizing device performance. Our research leverages an array of mathematical methods, including multi-wave analysis, periodic wave solutions, lump soliton dynamics, breather wave phenomena, homoclinic breathers, M-shaped waveforms, and rogue wave analysis. Additionally, our investigation encompasses the exploration of single kink and double kink configurations, interactions between periodic and kink waves, interaction between M shaped with kink and rogue, interaction between M shaped with one kink, interaction between M shaped with kink and periodic, interaction between M shaped with two kinks as well as periodic wave interactions with lump waves. To further emphasize the structure of solutions derived from particular parameter choices, we include three-dimensional, two-dimensional, streamplot, and contour graphs.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231980\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0231980","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Soliton-based modeling of nano-ionic currents in transmission line
Many nonlinear evolution equations, such as the nano-ionic currents (NIC) equation, are used extensively in many scientific and technological domains particularly in nanoelectronics and bioelectronics. The mathematical modeling of NIC phenomena is vital for understanding their behavior and optimizing device performance. Our research leverages an array of mathematical methods, including multi-wave analysis, periodic wave solutions, lump soliton dynamics, breather wave phenomena, homoclinic breathers, M-shaped waveforms, and rogue wave analysis. Additionally, our investigation encompasses the exploration of single kink and double kink configurations, interactions between periodic and kink waves, interaction between M shaped with kink and rogue, interaction between M shaped with one kink, interaction between M shaped with kink and periodic, interaction between M shaped with two kinks as well as periodic wave interactions with lump waves. To further emphasize the structure of solutions derived from particular parameter choices, we include three-dimensional, two-dimensional, streamplot, and contour graphs.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves